
Near Optimal Hierarchical Encoding of Types ?Andreas Krall1, Jan Vitek2 and R. Nigel Horspool31 Institut f�ur Computersprachen, Technische Universit�at WienArgentinierstra�e 8, A-1040 Wien, Austriaandi@complang.tuwien.ac.at2 Object Systems Group, Centre Universitaire d'InformatiqueUniversit�e de Gen�eve,24 rue G�en�eral-Dufour, CH-1211 Geneva, Switzerlandjvitek@cui.unige.ch3 Department of Computer Science, University of Victoria,P.O. Box 3055, Victoria, BC, Canada V8W 3P6nigelh@csr.uvic.caAbstract. A type inclusion test is a procedure to decide whether twotypes are related by a given subtyping relationship. An e�cient imple-mentation of the type inclusion test plays an important role in the per-formance of object oriented programming languages with multiple sub-typing like C++, Ei�el or Java. There are well-known methods for per-forming fast constant time type inclusion tests that use a hierarchical bitvector encoding of the partial ordered set representing the type hierarchy.The number of instructions required by the type inclusion test is pro-portional to the length of those bit vectors. We present a new algorithmbased on graph coloring which computes a near optimal hierarchical en-coding of type hierarchies. The new algorithm improves signi�cantly onprevious results { it is faster, simpler and generates smaller bit vectors.1 IntroductionChecking the type of a value is a common operation in typed programming lan-guages. In many cases this requires little more than a comparison. But, modernlanguages { those which allow types to be extended { complicate matters slightly.Type tests must check for inclusion of types, that is, whether a given type is anextension (or a subtype) of another type. The subtyping relation, a partial orderon types, written <:, is the transitive and reexive closure of the direct subtyperelation <:d. The common practice for object-oriented programming languagesis to derive <:d directly from the inheritance structure of a program. Thus, eachclass A de�nes a type A, and A is a subtype of B either if A = B, or if A inheritsfrom B.? To appear at ECOOP'97

Type inclusion tests can occur so frequently in programs, particularly object-oriented programs, as to put a strain on the overall system performance. It isimportant to have type inclusion testing techniques which are both fast andconstant-time. However, these techniques should also be economical in space.The techniques developed in this paper are based on a scheme called hierar-chical encoding. This scheme represents each type as a set of natural numbers.The sets must be chosen so that eitherx <: y , (x) � (y) (top down encoding)or x <: y , (x) � (y) (bottom up encoding)where (x) maps type x to its set representation. Thus, the set used for a subtypehas to be a superset of the set representing its parent. The sets have a naturalrepresentation as bit vectors. An example for a small hierarchy is shown in�gure 1 (top down encoding) and �gure 2 (bottom up encoding). In the bit vectorrepresentation the test function for hierarchical top down encoding becomesx <: y , (x) _ (y) = (x)or alternativelyx <: y , (x) ^ (y) = (y)which would be implemented in C code asif ((type->code & parenttype->code) == parenttype->code)/* it is a subtype */
��� ��� ������ ������d e fb caf1,3g = 101 f1,2g = 011 f2,3g = 110f1g = 001 f2g = 010fg = 000�� ��@@ ��@@ @@Fig. 1. Hierarchical encoding (top down)The following sections briey discuss previous work on type inclusion tests.Subsequently, we describe our new method which uses graph coloring techniquesto �nd nearly optimal set representations for types in a multiple inheritancehierarchy. Finally, we present experimental results which show that our new

2

��� ��� ������ ������d e fb caf2g = 010 f3g = 100 f1g = 001f2,3g = 110 f1,3g = 101f1,2,3g = 111�� ��@@ ��@@ @@Fig. 2. Hierarchical encoding (bottom up)method is signi�cantly better than the main competing method on three counts.It generates signi�cantly shorter bit vectors, it computes the vectors faster, andit requires less working storage.2 Previous workOne `obvious' algorithm for implementing the type inclusion test is that de-scribed by Wirth[Wir88]. To test if x <: y, the algorithm proceeds up the inheri-tance hierarchy starting from x to see if y is an ancestor. However, the algorithmdoes not run in constant time, which is a problem if the hierarchy becomes large,and the basic algorithm works only for single inheritance hierarchies. Generaliz-ing the method to work with multiple inheritance, either by using backtrackingor by constructing sets of parents, makes it slower still.Another `obvious' algorithm, and one which achieves a fast constant timetest, is to use a precomputed matrix that records all possible relationships. Anelement M[x,y] in the binary matrix holds a 1 if x <: y and 0 otherwise. Althoughthis implementation is used by some O-O languages, it has the drawback thatthe matrix can be very large. If there are 2000 types, the matrix will consumenearly 500 KB. (There are a number of schemes for compacting the matrix atthe expense of making a look-up in the matrix much slower [DDH84].)Cohen showed how the type inclusion test can be implemented in constanttime using the concept of displays to precompute paths through the inheritancehierarchy[Coh91]. However, Cohen's method uses more memory than Wirth'sand, in its original form, is applicable only to single inheritance hierarchies.Caseau took a di�erent path based on hierarchical top down encoding. Hewas inspired by a method originally developed for fast implementation of latticeoperations [ABLN89] based on hierarchical bottom up encoding and adapted itto the type inclusion problem[Cas93]. Caseau's scheme computes a bit vector foreach type. The bit vector represents a set of genes, where a gene is representedby a natural number. Each type that has only one parent in the hierarchy has
3

an associated gene. A type with multiple parents has no associated gene. Thebit vector for a type T is computed as the set of all genes associated with itselfand with all ancestors of T . Testing if x <: y is implemented as a test to seeif the set of genes for type x is a superset of the set for y. Caseau's methodrequires that the type hierarchy be a lattice. This requirement may force extranodes to be added to the hierarchy. Caseau gave an incremental algorithm formaintaining the lattice property and gave a backtracking technique for �ndingsets of genes and for updating previously computed sets of genes as the hierarchyis constructed in a top-down manner.Problems with implementing Caseau's algorithm inspired us to develop ourown method for �nding sets of genes. We encountered situations where theCaseau algorithm produces incorrect results. Such an example is shown in �gure3. Even if we assume that the error can be corrected, Caseau's method for main-taining the lattice property may force the addition of an exponential numberof additional nodes (and therefore also require exponential running time). Theworst case is unlikely to occur in practice, but this is nevertheless undesirablebehavior. We also discovered that the number of distinct genes used by Caseau'salgorithm may be considerably more, sometimes by a factor of 4, than the opti-mal number. Since the number of genes determines the sizes of the bit vectors(and therefore determines the running time of the set inclusion test too), it isimportant to minimize the number.
������������

�� ��� ���edb a c ff1,2,3gf1,3gf1g fg f2g f2,3g f2,4g��@@ ���@@@ @@@Fig. 3. An incorrect encoding produced by Caseau's algorithmHabib and Nourine showed that constructing an optimal bit vector encod-ing for partially ordered sets is NP-hard [HN94]. They also showed in [HN94]and [HN96] that there exist some classes of lattices (distributive and simpliciallattices) where, for an optimal solution, all genes have to be di�erent. For theseclasses of lattices, therefore, an optimal solution can be constructed in lineartime. Partially ordered sets resulting from type hierarchies tend to be very dif-ferent from distributive lattices, so their encodings are correspondingly an orderof magnitude more compact.
4

3 Near optimal hierarchical encodingOur near optimal hierarchical encoding algorithm is similar to Caseau's becauseit also relies on a top down encoding. But, unlike Caseau's algorithm, our algo-rithm does not require the hierarchy to have a lattice structure { it can encodeany partially ordered set. We rely on balancing the height of the hierarchy anduse graph coloring to �nd a near optimal solution. The algorithm was designedfor fast execution (it has worst case quadratic run time complexity) for inte-gration into compilers for object oriented programming languages with multipleinheritance or multiple subtyping. Instead of performing a full and slow searchfor optimal encodings, we have used simple heuristics to �nd a near optimalsolution in a matter of seconds.3.1 The basic algorithmTo make hierarchical encoding of partially ordered sets practical, we must avoidany restriction to lattice structures and thereby avoid the exponential behaviorof lattice completion. We can easily eliminate such a restriction if we associatea gene (i.e. a distinguishing bit) with all nodes in the hierarchy. In contrast,Caseau's method associates a gene only with nodes that have a single parent.However, a better solution is to determine which nodes actually need a gene.To �nd a correct hierarchical top down encoding, the following equation mustbe ful�lled in both directions:x <: y , (x) � (y)If a type with only one parent gets a gene and every type inherits all the genesof its super types, the left to right direction of the equation is ful�lled. Theopposite direction is more di�cult to achieve if the hierarchy is not a lattice.Consider the example hierarchy of �gure 4. Types e and f both have more thanone direct super type. Type e needs its own gene (4), otherwise its encodingwould be included in the encoding of f { which wrongly would state that f is asubtype of e.The solution to the problem is to give all types with multiple super types a geneif they would violate the above equation. So our algorithm just checks the aboveequation to determine which types require a gene. For the purpose of describingour algorithm, we �rst give some de�nitions:parents(x) // all nodes which are a direct supertype of xchildren(x) // all nodes which are a direct subtype of xancestors(x) // all nodes which are a supertype of xdescendants(x) // all nodes which are a subtype of xsingles // all nodes in the hierarchy with a single parentmultis // all nodes with more than one parentneedgenes // all nodes which need a gene
5

������������������
e fb c da

f1,2,4g f1,2,3gf1g f3gf2gfg���@@@ ������ @@@
Fig. 4. Multiple inheritance type (e) needs a gene (4)All nodes m 2 singles need a gene and needgenes becomes singles. Allnodes m 2 multis for which 9n 2 multis and not n <: m need a gene (and areadded to needgenes) ifancestors(m) \ needgenes � ancestors(n):For a correct hierarchical encoding it is not necessary for the genes to bedistinct. Two genes can be the same if other genes ensure di�erent encodings.For an example just take a hierarchy with two chains. The genes in one chaincan be the same as in the other chain. Only the topmost node in each chainmust be di�erent to ensure correct encoding. In the hierarchy in �gure 1, thegenes of d and f can be the same. The di�erent genes for b and c ensure a correctencoding.Our algorithm determines which nodes cannot use the same genes. For eachnode, the set of conicting nodes is determined and a conict graph is con-structed. An edge in the conict graph means that two nodes are not allowed touse the same gene.The conict graph is constructed as follows:{ Every node conicts with all descendants of its parents.{ In addition, a node N conicts with all ancestors of any descendants of N 'sparents if these descendants are not descendants of N .A correctness proof for the conicting genes can be found in [Cas93]. It hasto be modi�ed slightly, since Caseau missed some cases for the second class ofconicts. The following pseudocode gives a more formal description of conictgraph computation.for each x 2 hierarchy doparx := parents(x)

6

if parx = fg then parx := fxgfor each y 2 descendants(p); y 6= x;8p 2 parx doenter conict between x and y in conict graphif y 2 multis;:(y <: x) then8anc 2 ancestors(y); anc 6= y, enter conict betweenx and anc in conict graphAfter the conict graph has been constructed, graph coloring is used to �nda solution to the gene assignment problem. The hierarchical code for a node isthen computed as the union of the genes for all its ancestors and for itself.A better, near optimal, solution can be found if sets of children are subdividedand the hierarchy is balanced before the conict sets are computed. The next twosubsections describe both coloring and balancing in some detail. The main stepsof the encoding algorithm are as follows (complete pseudocode can be found inthe appendix).mark all nodes in hierarchy which need a genesplit children lists and balance the hierarchycompute conict graphcolor the conict graphcompute code3.2 Coloring the conict graphComputing the chromatic number of a graph (determining the minimal numberof colors needed to color vertices of the graph) is a NP-complete problem. Thereexist backtracking algorithms which can compute the chromatic number for verysmall graphs (up to 100 vertices), there are probabilistic algorithms with almostpolynomial run time [EL89] and there are genetic, tabu and hybrid algorithmsfor graph coloring [FF95]. But all these algorithms are unusable for the largeconict graphs which we must construct for type hierarchies. The graphs mayhave 2000 vertices and 200000 edges (see table 6).There is, however, a class of very fast heuristic algorithms which give goodresults on most graphs and are used, for example, in graph coloring registerallocators [BCKT93]. These sequential vertex coloring algorithms [MMI72] havea run time which is linear in the number of vertices plus the number of edges inthe conict graph [MB83]. All these algorithms order the vertices according tosome predetermined criteria and color the vertices in this order. If no color, outof those used so far, can be reused for the current vertex, the number of colorsis increased by one and the vertex is assigned the new color. Otherwise, one ofthe existing colors, one which does not cause a conict for the current vertex, isselected.
7

[MMI72] presents two algorithms which give the best results: largest degree�rst ordering and smallest degree last ordering. Largest degree �rst ordering sortsthe vertices by the vertex degree (number of edges from the vertex) and startscoloring with the vertex with the largest degree. Smallest degree last orderingrecursively removes the vertex with the smallest degree together with all itsedges from the graph and colors the vertices in reverse order of removal. Oftenthe smallest degree last algorithm gives the best results.Another possibility is to construct a vertex order from the structure of thehierarchy. The simplest order is generated by a top down, depth-�rst, traversal ofthe hierarchy. A di�erent order is based on a topologically sorted order. Here, thetop down traversal is modi�ed so that it descends to a node N in the hierarchyonly if all parents of N have already been visited. This traversal visits the nodesin an order similar to that assumed by Caseau in his algorithm. We will refer tothis order as the Caseau order. An evaluation of all these algorithms shows thatthe smallest degree last algorithm gives the best results (see section 4 table 4).For many hierarchies, this algorithm �nds an optimal result.There are di�erent strategies for choosing which color to reuse for the currentvertex. If the colors are numbered in order of �rst use, two simple strategies areto use the color with (1) the smallest number or (2) the largest number. Anotherstrategy is to choose the most heavily used color which does not cause a conict.Table 5 in section 4 shows some results using these strategies. The strategy thatselects the most used color weighted by the degree of the node often gave thebest results in our experiments. Since there is no consistent winner, a mixedstrategy which tries more than one method and then picks the best result mightbe appropriate.In [MB83], an improvement to sequential vertex coloring is presented. Ifthere is no unused color available, an color exchange is tried. First all conictingcolors are collected which conict only once with the vertex to color. Thenthere is a search for a vertex which is not in conict with one of these collectedvertices and the new vertex. If such a vertex can be found, the colors can beexchanged and the new vertex can be colored. Unfortunately, we found that thiscolor exchange strategy fails with the conict graphs constructed for our typehierarchies. Our graphs tend to have so many edges that there are no nodeswhich can be exchanged. We assume the reason is that nodes near the top of thehierarchy conict with nearly all nodes.3.3 Splitting and balancing the hierarchyCaseau noted in [Cas93] that the number of bits needed for hierarchical encodingis greatly inuenced by the number of children at a node. If a node has k children,then k distinct genes are immediately needed to distinguish these children. Toreduce this number when k is large, we can either use more than one gene todistinguish the di�erent children or we can split the children into smaller groups
8

by adding additional nodes to the hierarchy. Using more bits to identify a typecomplicates the algorithm and makes it di�cult to �nd a near optimal solution.Therefore, whenever a node had more than 8 children, Caseau split them intotwo groups and introduced two additional nodes as parents for those groups.Repeatedly applying this technique reduces the total number of genes needed,but it far from being an optimal strategy.We also use the idea of splitting children into groups but we attempt tobalance the hierarchy when inserting new nodes. A lower bound on the numberof genes needed for hierarchical encoding may be constructed as maximum overall weighted path lengths from the root node to a leaf node. The path length fora leaf node is X jchildren(N)jwhere children(N) is the set of child nodes for node N , and the sum is madeover all nodes N on the longest path from the root node to the leaf node. Onlychild nodes which need a gene are counted for the path length. For hierarchieswhich are trees, the largest path length also provides the optimal solution. Anoptimal solution for the hierarchical encoding of trees can be constructed bysplitting children lists and generating a balanced binary tree which minimizesthe path length. A bottom-up algorithm can be used to balance the tree. Theexample in �gure 5 shows the number of genes needed being reduced from 5 to4 by balancing.
������������������c db e fa
f1,4g f1,5gf1g f2g f3gfg�� �� @@ ������������ ������ uc db e fa

f1,3g f1,4gf1g f2,3g f2,4g
fg f2g�� �� ��� @@@@@@Fig. 5. Balancing a treeAn optimal balancing algorithm appears to be feasible only for tree-structuredhierarchies. With multiple subtyping, the hierarchy has to be balanced to gen-erate the minimal chromatic number for its conict graph. Since computing theminimal chromatic number is NP-complete, the balancing problem is very likelyto be NP-complete too. We therefore looked for a heuristic solution. In practice,most multiple subtyping hierarchies deviate only slightly from a tree structure.Heuristics based on the tree balancing method work satisfactorily when takinginto account the characteristics of multiple inheritance hierarchies.

9

If we are balancing a tree, splitting the children into two groups can beperformed arbitrarily. In the multiple subtyping case, children which share somecommon descendants should be assigned to the same group. If we did not dothat, coloring is made harder because these common descendants would gain anadditional parent node.The splitting process is faster if it is performed in two stages. A `presplitting'pass repeatedly performs a heuristic split into two groups and adds two parentnodes until the groups are smaller than a certain limit (currently 14 nodes) usingprecomputed path lengths. The second pass recomputes the path lengths afterevery split and does a more complicated split inserting one or two nodes.The presplitting pass computes an optimistic path length for every leaf node.These optimistic path lengths are computed assuming fewer than three childrenper node. It is assumed that the hierarchy can be balanced without introducingnodes on the critical path. A leaf node's path length is propagated together withan unique number to all ancestors of the leaf node. During the propagation, largerpath lengths overwrite smaller ones. Furthermore the set of all descendants of anode are computed as a bit vector. Using these sets, children which are detectedto have overlapping descendant sets are placed in the same bucket. All childrenlists are sorted according to three criteria. The primary criterion is by bucket,the secondary criterion is by leaf nodes, and the third by the size of the pathlength. Then every list of children which is longer than the limit is split into twoparts so that the lengths of both lists are smaller than the largest power of twowhich is smaller than the original length of the list.The second splitting pass precomputes the correct path length after everysplit, and uses the sum of all children which need a gene on the path from theroot to a leaf. The leaf's path length is again propagated to all ancestors. Thenthe ancestors of the leaf node with the largest path length are checked for achildren list to split. This splitting takes care that ancestors of the leaf node arein the same list after splitting. The path lengths of the nodes are also taken intoaccount and, depending on the circumstances, either one or two new nodes areinserted.3.4 Space and time complexityA careful implementation of the algorithm needs 19 milliseconds for the smallesthierarchy and 2 seconds for the largest hierarchy when encoding the hierarchyon an Alpha workstation with a 500MHz 21164a processor. The worst-case timecomplexity of the algorithm is quadratic. The average complexity is lower anddepends on the number of edges in the conict graph. The marking part isquadratic in the number of nodes that have more than one parent (i.e. thesize of multis). Each splitting step during balancing is linear in the number ofnodes, but since the number of nodes can be doubled this also implies quadraticcomplexity. Coloring is linear in the sum of nodes and edges in the conict graph
10

[MB83]. The number of edges is limited by the number of nodes squared, butusually is about twice as large as the average number of ancestors times thenumber of nodes. Table 1 shows the proportion of the total run time spent oneach of the algorithm's subtasks (encoding the Geode hierarchy).input marking splitting conict graphmanagement pre �nal graph coloring6.6% 6.2% 3.1% 58.4% 21.3% 4.4%Table 1. Execution pro�le of the encoding algorithmThe space cost is dominated by the storage needed for the conict graph.The graph is stored in two representations. One is a bit vector to provide a fastcheck to see if a conict has already been entered in the graph. The second is alist representation that allows fast sequential access to conicting nodes. If spaceis a concern, computation time can be traded for space. It is not necessary tostore the conict graph { it can be computed twice. Initially, only the degreefor each node is stored, and then the nodes are sorted according to decreasingdegree. Subsequently, the conicts are computed for each node and immediatelycolored. This increases the time, but reduces space requirements.3.5 Incremental algorithmThe algorithm as presented above is not suited for incremental computation ofthe encoding bit vector. But if slightly worse encodings are accepted, it can bemodi�ed for incremental computation. An incremental algorithm can only beimplemented in a top down manner where all super types of an added type haveto belong to the hierarchy already. The main di�culties are that the size of theencoding could grow from one machine word to two (or from two words to three,and so on), as well as the space consumption and execution time consumptioncaused by a recomputation of the encoding, if the balancing or encoding changes.The problem caused by increasing the number of machine words can be solvedby linking at run time with di�erent type checking subroutines which work forone, two, three or more machine words.The current algorithm stores the complete bit matrix for fast computation oftype inclusion tests. Additionally, ancestors sets and descendants sets are storedfor faster determination of which nodes need a gene and for faster balancing.In an incremental algorithm, fast type inclusion can be performed using thebit vector encodings. Also the test whether a type with more than one supertype needs its own gene can be performed using bit vector encodings instead ofancestor sets. Balancing could be replaced by a simpler splitting process which
11

ignores the depth of the tree. Coloring could be carried out using an algorithmsimilar to the one proposed by Caseau.4 ResultsThis last section evaluates di�erent aspects of the algorithm and compares theperformance of the algorithm with other approaches. As test data, we used acollection of class libraries compiled by Karel Driesen. We also obtained theLaure type hierarchy from Yves Caseau [Cas93] and the Java API library fromSun [GYT96]. Table 2 presents the relevant characteristics of those libraries. Thenumber of classes varies from 225 to 1956, representing both big applications andlibraries. The depth of the hierarchy ranges from 7 to 18. The �rst four librariesuse single inheritance only; the others use multiple inheritance with up to 16parents per class. Except for the three programs written in LOV (a languagesimilar to Ei�el), the average number of parents is close to one. For the threeLOV programs the average number of parents is close to two.library name language classes depth max parents avg. parentsVisualworks2 Smalltalk-80 1956 15 1 1digitalk3 Smalltalk-80 1357 14 1 1NeXTStep Objective-C 311 8 1 1ET++ C++ 371 9 1 1Unidraw C++ 614 10 2 1.01Self Self 1802 18 9 1.05Geode LOV(Ei�el) 1319 14 16 1.89Ed LOV(Ei�el) 434 11 7 1.66LOV LOV(Ei�el) 436 10 10 1.71Laure Laure 295 12 3 1.07Java Java 225 7 3 1.04Table 2. Hierarchy characteristicsTable 3 shows the main result, the number of bits needed for the encodingusing three di�erent splitting strategies combined with two di�erent coloringstrategies. The �rst two columns show the number of genes needed for encod-ing the original hierarchy. The next two columns show the genes needed for ahierarchy where all classes with more than 8 children have been replaced by aclass that has two new classes as children, each having one half of the childrenof the original class. The last two columns show the results for a balanced hier-archy using the balancing algorithm described in the previous section. The twosequential coloring techniques use an ordering similar to that used by Caseau
12

(top down after all parents of a class have been colored) and the smallest de-gree last ordering. Note that Caseau's algorithm cannot directly encode all ourhierarchies because it requires every hierarchy to be a lattice; we only color theclasses in a sequence which is similar to the ordering of his algorithm. To com-pare Caseau's results with ours, it is necessary to compare the column Caseauof max 8 children with the last column. Our algorithm can reduce the sizes ofthe encodings to one quarter of those produced by Caseau's algorithm.original hierarchy max 8 children balanced hierarchysmallest smallest smallestbenchmark Caseau last Caseau last Caseau lastVisualworks2 420 420 124 124 50 50digitalk3 325 325 116 116 36 36NeXTStep 177 177 92 92 23 23ET++ 181 181 61 61 30 30Unidraw 227 227 96 96 30 30Self 297 297 180 180 55 53Geode 404 403 231 228 110 95Ed 128 126 90 80 62 54LOV 130 127 92 86 68 57Laure 34 33 34 33 23 23Java 97 97 50 50 22 19Table 3. Bit count of Caseau and near optimal coloring for di�erent balancedhierarchiesTable 4 gives the performance using six di�erent sequential coloring tech-niques. The �rst column (smallest �rst) is the worst ordering; it starts with theclass which has the smallest degree (the smallest number of conicting classes).Random ordering takes the classes in the order they are read in. Top down order-ing traverses the hierarchy in a depth �rst manner from the root node down tothe leaf nodes. The Caseau ordering also traverses the hierarchy top down, butit colors a class only after all parent classes have been colored. Largest degree�rst and smallest degree last are the orderings suggested by Matula [MMI72]and give the best results for our conict graphs. The lower bound column givesan estimate for the lower bound using the largest path length as described in theprevious section. This estimate is quite accurate for tree-like hierarchies but isonly approximate for other hierarchies. In many cases, coloring needs the samenumber of colors as estimated by the lower bound and this shows that an optimalsolution has been found. It is evident that conict graphs resulting from singleinheritance hierarchies can be colored optimally regardless of the algorithm used.The quality of a sequential coloring algorithm not only depends on the or-
13

smallest top largest smallest lowerbenchmark �rst random down Caseau �rst last boundVisualworks2 50 50 50 50 50 50 50digitalk3 36 36 36 36 36 36 36NeXTStep 23 23 23 23 23 23 23ET++ 30 30 30 30 30 30 30Unidraw 30 30 30 30 30 30 30Self 60 57 56 55 53 53 47Geode 140 122 120 110 99 95 42Ed 84 72 68 62 57 54 30LOV 86 73 79 68 59 57 31Laure 24 25 23 23 23 23 23Java 22 22 22 22 19 19 19Table 4. Bit count of di�erent coloring techniquesdering of the vertices but also on the color chosen if there is a choice of morethan one non-conicting color to reuse. The last use coloring method sorts thecolors by their last uses and takes the �rst used color which does not conict.The largest coloring method selects the color with the largest number while thesmallest coloring method selects the color with the smallest number. The bestcolor selection algorithms are based on an assumption that preferring a colorwhich is heavily used should produce fewer conicts later on. The max use col-oring method counts the number of uses of each color and takes the most usedone. The last two algorithms weight the use by the degree of the class. The maxsdl coloring method weights the use count by the removal degree obtained bythe smallest degree last ordering, and the max ldf coloring method weights theuse count by the unmodi�ed degree. The smallest coloring method and the threemax use methods sometimes give di�erent best results. Because the computationtime for a coloring is small compared to the time needed to construct the conictgraph, it makes sense to try all four algorithms and take the best result.Table 6 gives more data on the characteristics of the di�erent type hierarchieswith respect to the algorithm. It is evident that in most hierarchies the numberof types which need their own gene is small compared to the number of typeswith multiple super types. The only exceptions are the three LOV hierarchies,where half the types need their own gene. The column balancing nodes shows alsothat the most added balancing nodes were needed for the Geode hierarchy. Thenumber of conict edges increases if there is a higher use of multiple inheritance.Computations of the encodings have been performed on an Alpha workstationwith a 500MHz 21164a processor. All computation times are in milliseconds.We compared the size of the tables resulting from a bit matrix representationof the transitive closure of the subtype relation with our encoding (table 7). The
14

last use largest smallest max use max sdl max ldfbenchmark color color color color color colorVisualworks2 50 50 50 50 50 50digitalk3 36 36 36 36 36 36NeXTStep 23 23 23 23 23 23ET++ 30 30 30 30 30 30Unidraw 30 30 30 30 30 30Self 54 53 54 54 53 54Geode 97 97 95 95 97 95Ed 56 56 55 56 56 54LOV 60 62 59 61 62 57Laure 23 23 23 23 23 23Java 19 19 19 19 19 19Table 5. Bit count of di�erent color choosing techniques
type singles multis need balancing conict conict computaionbenchmark number gene nodes nodes edges time (ms)Visualworks2 1965 1965 0 0 388 2353 62394 890digitalk3 1357 1357 0 0 298 1655 37871 426NeXTStep 311 311 0 0 103 414 6141 30ET++ 371 371 0 0 94 465 7997 39Unidraw 614 604 10 4 164 772 13541 93Self 1802 1741 61 22 465 2228 113489 1367Geode 1319 614 705 384 796 1794 149052 1902Ed 434 272 162 68 198 538 26885 136LOV 436 271 165 70 217 558 30428 168Laure 295 275 20 0 29 304 4823 21Java 225 216 9 1 63 280 3509 19Table 6. Complexity data of hierarchies

size of the table can be reduced by a factor of up to 31 for the test hierarchies.The size of the bit matrix encoding increases by n2 with the number of types. Thesize of the bit vector encoding (for a hierarchy which is a balanced binary tree)encreases by 2 �n logn. If the multiple inheritance portion is low, our algorithmcomes close to the logarithmic size increase.
15

size of size of reductionbenchmark bit matrix codes factorVisualworks2 485.3 16.0 31digitalk3 233.4 11.0 21NeXTStep 12.4 1.2 10ET++ 17.8 1.4 12Unidraw 49.1 2.4 20Self 410.8 14.7 28Geode 221.5 15.9 14Ed 24.3 3.4 7LOV 24.4 3.4 7Laure 11.8 1.1 10Java 7.2 0.9 8Table 7. Table sizes and reduction factor5 ConclusionWe have presented a near optimal algorithm for �nding hierarchical encodingsfor type hierarchies. Our algorithm produces encodings which are up to fourtimes shorter than encodings generated by a previous algorithm (Caseau) andtherefore provide a faster type inclusion check for object oriented languages withmultiple subtyping. The algorithm is also an order of magnitude faster than theprevious algorithm which makes it practical for use in compilers. To evaluateour algorithm, the complete source code can be obtained via world wide web athttp://www.complang.tuwien.ac.at/andi/typecheck/.References[ABLN89] Hassan A��t-Kaci, Robert Boyer, Patrick Lincoln, and Roger Nasr. E�cientimplementation of lattice operations. ACM Transactions on ProgrammingLanguages and Systems, 11(1):115{146, 1989.[BCKT93] Preston Briggs, Keith Cooper, Ken Kennedy, and Linda Torczon. Color-ing heuristics for register allocation. In ACM Conference on ProgrammingLanguage Design and Implementation, pages 275{284, Portland, June 1993.ACM.[Cas93] Yves Caseau. E�cient handling of multiple inheritance hierarchies. InConference on Object Oriented Programming Systems, Languages & Appli-cations, pages 271{287, Washington, October 1993. ACM.[Coh91] Norman H. Cohen. Type-extension type tests can be performed in con-stant time. ACM Transactions on Programming Languages and Systems,13(4):626{629, 1991.
16

[DDH84] Peter Dencker, Karl D�urre, and Johannes Heuft. Optimization of parser ta-bles for portable compilers. ACM Transactions on Programming Languagesand Systems, 6(6):546{572, 1984.[EL89] J. A. Ellis and P. M. Lepolesa. A Las Vegas graph coloring algorithm. TheComputer Journal, 32(5):474{476, 1989.[FF95] Charles Fleurent and Jacques A. Ferland. Genetic and hybrid algorithmsfor graph coloring. Annals of Operations Research, page to appear, 1995.[GYT96] James Gosling, Frank Yellin, and The Java Team. The Java ApplicationProgramming Interface. Addison-Weley, 1996.[HN94] Michel Habib and Lhouari Nourine. Bit-vector encoding for partially or-dered sets. In ORDAL'94, LNCS 831, pages 1{12. Springer, 1994.[HN96] Michel Habib and Lhouari Nourine. Tree structure for distributive latticesand its applications. Theoretical Computer Science, 165:391{405, 1996.[MB83] David W. Matula and Leland L. Beck. Smallest-last ordering and clusteringand graph coloring algorithms. Journal of the ACM, 30(3):417{427, July1983.[MMI72] David W. Matula, George Marble, and Joel D. Isaacson. Graph coloringalgorithms. In R. C. Read, editor, Graph Theory and Computing, pages109{122. Academic Press, 1972.[Wir88] Niklaus Wirth. Type extensions. ACM Transactions on Programming Lan-guages and Systems, 10(2):204{214, 1988.Appendix: the encoding algorithm// de�nitionsparents(x) // all nodes which are a direct supertype of xchildren(x) // all nodes which are a direct subtype of xancestors(x) // all nodes which are a supertype of xdescendants(x) // all nodes which are a subtype of xmark(x) // ag, is 1, if x need a distinguishing gene, 0 otherwiselength(x) // longest path length between x and a leaf nodeleaf(x) // leaf node of the longest path which includes xgene(x) // gene number, bit position in bit vectorcode(x) // the bit vector of class xsingles // all nodes in the hierarchy with a single parentmultis // all nodes with more than one parentneedgenes // all nodes which need a gene// mark all nodes of hierarchy which need a bitmark(s) := 1 8s 2 singlesneedgenes := singlesfor each m 2 multis doif 9n 2 multis;:(n <: m); ancestors(m) \ needgenes � ancestors(n)then mark(m) := 1; needgenes := needgenes[fmgelse mark(m) := 0
17

// balance the hierarchyde�ne compute length(l 2 Integer, leaf 2 hierarchy; x 2 hierarchy) asl := l +Pmark(childx);8childx 2 children(x)for each parentx 2 parents(x) doif length(parentx) < l thenlength(parentx) := lleaf(parentx) := leafcompute length(l; leaf; parentx)length(x) := �1 8x 2 hierarchyfor each leaf 2 hierarchy; children(leaf) = fg dolength(leaf) := 0leaf(leaf) := leafcompute length(0; leaf; leaf)for each x 2 hierarchy; size(children(x)) > 2 dosplit children(x) and add one or two nodes to hierarchyif this is possible without increasing length(y) for any y 2 hierarchy// compute conict graphfor each x 2 hierarchy doparx := parents(x)if parx = fg then parx := fxgfor each y 2 descendants(p); y 6= x;8p 2 parx doenter conict between x and y in conict graphif y 2 multis;:(y <: x) then8anc 2 ancestors(y); anc 6= y, enter conict betweenx and anc in conict graph// color the conict graphfor each x 2 hierarchy in smallest degree last order doif mark(x) = 1 then gene(x) := the most used non conicting gene// compute codefor each x 2 hierarchy docode(x) := [gene(ancx);8ancx 2 ancestors(x)
This article was processed using the LATEX macro package with LLNCS style

18

