Superinstructions and Replication
in the Cacao JVM interpreter

M. Anton Ertl* Christian Thalinger ~ Andreas Krall

TU Wien
AbStrz,let .) o) VM Code VM instruction routines
Dynamic superinstructions and replication can providgdar
speedups over plain interpretation. In a JVM implementatio imul — > Machine code for imul
we have to overcome two problems to realize the full poténtia iadd Dispatch next instruction
of these optimizations: the conflict between superinsionst jiadd k‘ . .
and the quickening optimization; and the non-relocatsbili Machine code for iadd
of JVM instructions that can throw exceptions. In this paper Dispatch next instruction

we present solutions for these problems. We also present
empirical results: We see speedups of up to a factor of 4 Figurel. Threaded-code representation of VM code

on SpecJVM98 benchmarks from superinstructions with all

these problems solved. The contribution of making potéwntia

throwing JVM instructions relocatable is up to a factor of2' Background

2. A simple way of dealing with quickening instructions is This section explains some of the previous work on which the
good enough, if superinstructions are generated in JI'B.stylwork in this paper is built.

Replication has little effect on performance.

2.1 Dynamic Superinstructions

1. Introduction This section gives a simplified overview of dynamic superin-

. N . structions [RS96, PR98, EGO03].
Virtual machine interpreters are a popular programming Normally, the implementation of a virtual machine (VM)

Iangua_ge |mplement_at|on technlque, because they (.:Ombulnr%truction ends with the dispatch code that executes thie ne
portability, ease of implementation, and fast compilation

- : ; instruction. A particularly efficient representation of \dde
E.g., while the Mono implementation of .NET has JIT com-; : S
pilgrs for seven architegtures it also has an interprater iy threaded code [Bel73], where each VM Instruction is repre
: sented by the address of the real-machine code for executing

order to support other architectures (e.g., HP-PA and Alphath . : ; i ; L
h , e instruction (Fig. 1); the dispatch code then consistsqt
Mixed-mode systems (such as Sun’s HotSpot JVM) emplOYetching this ad(drgss)and jumging there. d

aninterpreter at the start to avoid the overhead of conipilat A VM superinstruction is a VM instruction that performs

an(i_tdseer;[qhaein\] I(-jl—is():(;)\//:r?tgeg%efniasgéfxre(;létridigoti%ir run-tim he work of a sequence of simple VM instructions. By replac-
9 P ing the simple VM instructions with the superinstructiome t

L n
speed. There are a number of optimizations that reduce thﬁﬁmber of dispatches can be reduced and the branch predic-

disadvantage. In this paper we look at dynamic superinstru o - A
tions (see Section 2.1) and replication (see Section 2 el i{g)goagcuracy of the remaining dispaiches can be improved

context of the Cacao JVM interpreter.
While these optimizations are not new, they pose some One approach for implementing superinstructions is dy-

interesting implementation problems in the context of a JvMiamic superinstructions: Whenever the froqt]eolnhe inter-
implementation, and their effectiveness might differ fribrat pretive system compiles a VM instruction, it copies the veal

measured in other contexts. The main contributions of thi achine code for the instruction from .a.ﬁcer;]\plate to the end of
paper are: e current dynamic superinstruction; if the VM instruatio

is a VM branch, it also copies the dispatch code, ending the
o We present a new way of Combining dynamic Superinsuperinstruction; the VM branch has to peI’fOI’m a dispatCh in

structions with the quickening optimization (Section 3). order to perform its control flow, othqrwise i; would justlfal
through to the code for the next VM instruction. As a result,

e X X the real-machine code for the dynamic superinstructiohds t
tion implementations that may throw exceptions (SeCzgncatenation of the real-machine code of the component VM
tion 4). instructions (see Fig. 2).

¢ We present empirical results for various variants of dy- In addition to the machine code, the front end also pro-
namic superinstructions and replication combined witlduces threaded code; the VM instructions are represented by
different approaches to quickening and to throwing JVMpointers into the machine code of the superinstruction.
instructions (Section 5). This shows which of these issues During execution of the code in Fig. 2, a branch to the
are important and which ones are not. iload b performs adispatch through the first VM instruction

slot, resulting in the execution of the dynamic superircstru

¢ \We show how to avoid non-relocatability for VM instruc-

* Correspondence Address: Institut fiir Computersprachiechnis-
che Universitat Wien, Argentinierstrae 8, A-1040 Wieryskia; 1 More generally, the subsystem that generates threaded eage
anton@mips.complang.tuwien.ac.at the loader or, in the case of the Cacao interpreter, the Jipder.

data segment data segment code segment
dyn. superinst code threaded VM Code VM routine template

iload Machine code for isub
Machine code for iload / b Dispatch next
Machine code foriload <—iload Machine code for iload
Machine code forisub ~__ | ¢ Dispatch next
Machine code for istore \.'SUb Machine code for istore
istore)
a Dispatch next
Dispatch next

Figure2. A dynamic superinstruction for a simple JVM sequence

tion code starting at the first instance of the machine code fo ACONST INVOKESPECTAL
iload, and continues the execution of the dynamic superin- ARRAYCHECKCAST INVOKESTATIC
struction until it finally executes another dispatch thrioag- CHECKCAST INVOKEVIRTUAL
other VM instruction slot to another dynamic superinstruc- GETFIELD_CFLL MULTTANEWARRAY
tion. . - GETFIELD_INT NATIVECALL

As a result, most of the dispatches are eliminated, and GETFIELD_LONG PUTFIELD.CELL
the rest have a much better prediction accuracy on CPUs GETSTATIC._CELL PUTFIELD.INT
with branch target buffers, thus eliminating most of the dis GETSTATIC._INT PUTFIELD.LONG
patch overhead. In particular, there is no dispatch overirea GETSTATIC_LONG PUTSTATIC.CELL
straight-line codé. _ o INSTANCEQF PUTSTATIC_INT

There is one catch, however: Not all VM instruction im- INVOKEINTERFACE PUTSTATIC.LONG

plementations work correctly when executed in anotheregplac

E.g., if a piece of code contains a relative address for soméigure 3. Instructions in the (JVM-derived) Cacao inter-

thing outside the piece of code (e.g., a function call on thereter VM that reference the constant pool

IA32 architecture), that relative address would refer te th

wrong address after copying; therefore this piece of code is

not relocatable for our purposésihe way to deal with this machine code, and the new instance could be freed (non-

problem is to end the current dynamic superinstruction bereplication).

fore the non-relocatable VM instruction, let the VM instruc Replication is good for indirect branch prediction accyrac

tion slot for the non-relocatable VM instruction point ts it on CPUs with branch target buffers (BTBs) and is easier to

original template code (which works correctly in this place implement, whereas non-replication reduces the real-mach

and start the next superinstruction only afterwards. code size significantly and can reduce the I-cache misses.
Dynamic superinstructions can provide a large speedup at

a relatively modest implementation cost (a few days eveh wit2.3 Cacao interpreter

the additional issues discussed in this paper). It doeseaU . the present work, we revitalized the Cacao interpreter
bit of platform-specific code for flushing the instructiorcha

(usually one line of code per platform), but if this code is[EGKPOZ] and adapted it to the changes in the Cacao system

. S he original implementation (in particular, quic
not available for a platform, one can fall back to the pla'n:\lr:]g%ts-il?;g(l)rr]{aedlﬁe:adg). lon (in particular, quickg

threaded-code interpreter on that platform. The most unusal thing about the Cacao interpreter is that

it does not interpret the JVM byte code directly; instead, a
kind of JIT compiler (actually a stripped-down variant of
As described above, two equal sequences of VM instructiortdae normal Cacao JIT compiler) translates the byte code into
result in two copies of the real-machine code for the superirthreaded code for a very JVM-like VM, which is then inter-
struction (replication [EGO03]). preted. The advantage of this approach is that the interpret
An alternative is to check, after generating a superinstrucan use the fast threaded-code dispatch, and the immediate a
tion, whether its real-machine code is the same as that forguments of the VM instructions can be accessed much faster,
superinstruction that was created eaftirso, the threaded- because they are properly aligned and byte-ordered for the
code pointers can be directed to the first instance of the rearchitecture at hand. Moreover, this makes it easier togmpl
ment dynamic superinstructions and enables some minor op-
230me people already consider this to be a simple form of Jitimizations.
compilation. In this paper we refer to it as an interpretehteque, for The Cacao interpreter is implemented using Vmgen [EGKPO02],
the following reasons: 1) It can be added with relativelfidieffort ~ which supports a number of optimizations (e.g., keeping the

and very portably (with fall-back to plain threaded codedtessary) tgp-of-stack in a register), making our baseline integaret
to an existing threaded-code interpreter; 2) The executadhine already quite fast.

code still accesses the VM code for immediate arguments and f
control flow.

3Why do we not support a more sophisticated way of relocatin@- QUiCkening

code that does not have this problem? Because that relocagthod This section discusses one of the problems of the JVM and

would be architecture-specific, and thus we would lose theapitity - : : - .
advantage of interpreters; it would also make the impleatamt ‘NET when implementing dynamic superinstructions.

iignificantly rT10re complex, regucing the simplici‘ty advge. 31 Theproblem
Of course, instead of checking the real-machine code adielsy) .)

one could also check the virtual-machine code beforehartdhbtis A number of JVM instructions (see Fig. 3) refer to the con-

an implementation detail. stant pool, and through it to components of (possibly) other

2.2 Replication

data segment data segment code segment

dyn. superinst code threaded VM Code VM routine template
iload Machine code for iload
Machine code for iload — _ b _ Dispatch next
Dispatch next getfield_quick Machine code for istore
Machine code for istore Example.i |\~ Dispatch next
offset N . .
_ Store \ Machine code for getfield
Dispatch next : a _ Dispatch next
Machine code for getfield_quick

Dispatch next
—————————— » before executing getfield ISP X

——— after executing getfield

Figure4. Simple solution: Exclude slow and quick instructions fropmamic superinstructions.

classes. A class should be loaded and must be initialized ex- mainly CPUs without BTBs (branch target buffers) or
actly when the first instruction refering to it is executed. similar indirect-branch predictors.

Performing all the overhead of checking whether the class,
is already loaded and initialized, and resolving the clags a
component information into the actual information needed (
offset in the case ofetfield) on every execution is very
expensive: in experiments with an old version of Kaffee
found that optimizing this overhead away gives a speedup on
the SpecJVM98 benchmarks by about a factor of 3.

The original Java interpreter optimizes sugtbw instruc-
tionsby rewriting them and their immediate operand(s) in the
VM code intoquick instructionsvhen they are executed the
firsttime [LY97, Chapter 9]. This optimization is callgdick-

The quick instruction is not replicated, leading to a low
prediction accuracy for the dispatch by the quick instruc-
tion on CPUs with BTBs. This disadvantage could be
eliminated in, e.g., the following way: When the slow in-
struction rewrites itself into the quick instruction, ipte
cates the quick instruction (including its dispatch) and le
the instruction slot point to the new replica. However, this
approach will lead to less spatial locality and thus more
I-cache misses than the normal arrangement of dynamic
superinstructions with replication.

ening ¢ When applying additional optimizations, such as static su-
The immediate operand of the quick instruction is the re- ~ Perinstructions [EGKPO2] or static stack caching [EG04a],
sult of resolving the operand of the slow instruction. Eay., the natural approach to take would be to also exclude

the slowgetfield instruction the immediate operand is a the to-be-quickened instructions from these optimization
constant-pool reference to the field of a class, whereasithei ~ Everything else would require additional implementation
mediate operand @fetfield_quick is the offset of the field. costs similar to more sophisticated approaches for this
In our examples (e.g., Fig. 4) as well as in our implementa- Problem.

tion, we have separate slots for these two operands; in the ex) o

amples, this makes it easier to show what is happening; in the These disadvantages lead to significant slowdowns (com-
implementation, this reduces the need for locking [GH03]. Pared to more sophisticated approaches) when all slow in-

This approach does not work with dynamic superinstrucStructions are treated in this way [GHO3].
tions: In general, rewriting the VM code is not enough; we However, the Cacao interpreter translates the JVM byte-
would also have to rewrite or patch the real-machine codgde into threaded code using a JIT compiler with method
generated for the superinstruction; and the difficultiesrgh granularity. If the JIT compiler encounters a slow JVM in-
are that the real-machine code of the slow and the quick ifitruction that references a class that has already beeadoad
struction usually have a different length; moreover, trvsl @nd initialized, it translates it into a quick instructiorithy
instruction and its quick equivalent might not be both ratec Ut the intermediate state of a slow threaded-code ingruct
able (usually, the slow instruction is not relocatable, ¢vel 1h€se quick instructions can be integrated into dynamic su-
quick instruction is). perinstructions without a problem.

So, in the Cacao interpreter, only a subset of the slow
instructions from the original JVM code have the problems
mentioned above even with this simple solution. If the parts
A simple solution is to exclude slow instructions from beingof the code containing this subset are only executed rately,
integrated into dynamic superinstructions (justas itisadfor performance disadvantage of the simple solution is negjégi
non-relocatable instructions). A preceding dynamic sinper Our results (see Section 5) indicate that this is indeedabke.c
struction would end right before the slow instruction anst di However, we did not know this from the start, so we also
patch to the slow instruction as usual in threaded code. Theoked into more sophisticated approaches. Moreover, more
slow instruction could then rewrite itself into the quick in sophisticated approaches do have their merits in settiikgs (
struction, as in a plain threaded-code interpreter. SableVM) where no JIT translation into threaded code with

The disadvantages of this solution are: superinstructions is used: At least our sophisticatedaamr

is simpler to implement than a JIT translator.
e Usually two additional VM instruction dispatches are per-

formed per execution of the quick instruction that would3.3 Previous sophisticated solutions

e perome 1w et 1 16 1A S0y Cacaorpreter, SV ansieshe Myt
tion. and one' by the quick instruction itself. This hurtsc_ode into t_hreaded code with dynamic superinstructions. On

') difference is that SableVM keeps only the instruction stot f
the first VM instruction in a superinstruction, whereas tlze C
5 http://www.complang.tuwien.ac.at/java/kaffe-thredtle cao interpreter keeps all the VM instruction slots arouneige

3.2 A smplesolution

data segment data segment code segment

dyn. superinst code threaded VM Code VM routine template
) . - super|goto
Machine code for skip_operand g prepseq
Machine code for iload iload
Machine code for getfield_quick b Machine code for iload
Machine code for istore getfield_quick Dispatch next
offset Machine code for istore
Dispatch next Istore Dispatch next
a Machine code for getfield
/' Dispatch next
iload % Machine code for getfield_quick
b 1'; Dispatch next
getfield Machine code for goto
Example.i Dispatch next
op-ptr Machine code for replace
replace Dispatch next
super
inst-ptr
istore
a
goto
behind

—————————— » before executing prepseq
——— after executing prepseq

unused slot

Figure5. SableVM’s preparation sequence for the first execution hadlynamic superinstruction including a quick instruc-
tion for subsequent executions

though only the first one is used when the superinstruction is any way, and that code contains the slow instructions.
executed); to avoid confusion, we show the same approachVWie also record what the last slow instruction in the block
all the examples: all VM instruction slots are kept. is, and use this in a table called superstart: the last slow
SableVM deals with quickening by creating an out-of-lineinstruction is the lookup key, and it also contains a pointer
preparation sequence in VM code (see Fig. 5), as well &e the superinstruction real-machine code for the block, an
the superinstruction (which incorporates the quick versiof the first threaded-code word in the block.
any instructions to be quickened instruction). On first exec ~ When a slow instruction is executed, it first performs all
tion the VM code jumps to the preparation sequence, whicthe necessary loading and initialization work. Then it l9ok
performs the first execution (including a variant of the slowitself up in the superstart table, and patches the threaded-
instruction that patches the operand elsewhere), andteswri code word at the block start to point to the real-machine code
the goto to the preparation sequence into an invocation ofor the superinstructioh.The next time the basic block is
the superinstruction; finally, the preparation sequenogil executed, it will use the dynamic superinstruction.
to the first (super)instruction behind the VM code covered by We did not define above what we meanliigck It is the
the superinstruction. On the next execution, the VM code jus/M code covered by a dynamic superinstruction. It is essen-
executes the superinstruction. tially the same as a basic block, with one additional boundar
Casey et al. [CEGO5, Section 5.4] have also implementecbndition: If there is a VM instruction with non-relocatabl
dynamic superinstructions in a JVM interpreter. They treateal-machine code, that also terminates the superingtruct
the slow instruction as non-relocatable, as in the simple s@and thus the block); the next superinstruction startg #iie
lution, but leave space in the real-machine-code area #or tmon-relocatable VM instruction.
(real-machine code of the) corresponding quick instrictio In earlier work [EG03] we let superinstructions continue
on quickening, they copy the real-machine code for the quicktraight-line across control-flow joins. We cannot do thessh
instruction into that space, resulting in a dynamic superinconsider the case of a superinstruction consisting of two ba
struction that includes the quick instruction. This santre- sic blocks, with each basic block containing one slow VM
quires that all VM instruction slots are kept around. instruction:

3.4 Our sophisticated solution e When the first slow instruction is reached, this is not the
last slow instruction in the superinstruction, so we cannot
do the patching; if we did, we would get a race condition:
another thread could execute the quick instruction imple-
mentation in the superinstruction before this thread has
performed the necessary class loading and initializations

Figure 6 shows our approach: When we generate the threaded
code for a block, we also generate the real-machine code for
the superinstruction; however, if we encounter a slow ugstr
tion, we generate the real-machine code for the appropriate
quick instruction.

However, if there is a slow instruction in the block, we do
not let the threaded code point to the dynamic superinstmict 6\e need to patch only the first threaded-code word, because, o
right away. Instead, we first generate conventional thréadeve are executing the dynamic superinstruction, the othestted-
code, which does not reference the dynamic superinstructi@ode words are not used.

data segment data segment code segment
dyn. superinst code threaded VM Code VM routine template
superliload p----- > Machine code for iload
b Dispatch next
getfield Machine code for istore
Example.i Dispatch next
offset))
- Machine code for getfield
istore)
Dispatch next

a
Machine code for getfield_quick
Dispatch next

Machine code for iload
Machine code for getfield_quick
Machine code for istore

Dispatch next

last slow inst threaded code start real-machine code
superstart table

——————————— > before executing getfield
— —— after executing getfield

Figure 6. Cacao’s sophisticated solution: first execute threaded;dbe last slow instruction rewrites the first instruction i
the sequence into the superinstruction.

e \WWhen the second slow instruction is reached, it does not TALOAD GETFIELD_CFLL
know if it can patch the start of the first basic block, be- LALOAD GETFIELD_INT
cause |.t does not know if that basic block anq its .sllolw AALOAD GETFIELD_LONG
instruction has been executed, and the appropriate Hitial BALOAD PUTFIELD_CELL

izations done. CALOAD PUTFIELD_INT

SALOAD PUTFIELD_LONG

As a result, the part of the superinstruction for the first IASTORE INVOKEVIRTUAL
basic block would never be used. LASTORE INVOKESPECIAL
In earlier work we also let superinstructions continue BASTORE INVOKEINTERFACE
across fall-through edges of conditional branches. We also CASTORE ARRAYLENGTH
do not do this here: If there is a slow instruction in the fall- IDIV CHECKNULL
through path, but the branch is always taken, the supeuistr IREM

tion might never be activated.
One could work around these issues, but that would re=igure 7. Instructions in the (JVM-derived) Cacao inter-
quire significant complexity. preter VM that can throw exceptions
Note that the simple solution (Section 3.2) does not have
these restrictions and thus can be better than our soptiestic .
solution (depending on the dynamic frequencies of oridyral putgde the code fragment, nor absolute references totsarge
slow instructions vs. basic block ends and not-taken condibside the code fragment. _ _
tional branches). Thgre are a number of JVM instructions that can throw an
Another thing worth noting is that our solution requires€xception, but usually don't (see Fig. 7); egerfield (and
that the superinstruction keeps all the VM instruction slot it quick variants) can throw a null pointer exception.
because the first time the code is executed as plain threaded The code for throwing an exception is quite complex, so
code. In terms of the SableVM solution, we use the origi¥e don‘twant to replicate it with frequently occuring inst
nal sequence combined with the entry in the superstart t40nS like getfield. Moreover, it involves a function call,
ble as preparation sequence. So keeping all the slots Iea‘ﬂQ'Ch mak_es the code non-relocatab_le on most architectures
to a significant simplification here, as well as in other con{itis a relative reference to code outside the fragment).
texts, such as superinstructions across basic block bdesda ~ What we actually would like to do is to keep the throw
[EG03] and optimal selection of static superinstructions. ~ ¢ode common, and jump to it from the various potentially
Finally, one of the advantages of our sophisticated apEXCeption-generating VM instructions. Unfortunately,emh
proach over the simple solution and over the solution of gasdmplemented directly, this usually still makes the exaepti
et al. [CEGO5] is that our solution is easier to adapt to situdenerating VM instructions non-relocatable, because the d
ations where dynamic superinstructions are combined witFeCt jump uses relative addressing on most architectures.
static stack caching and/or static superinstructions: lgvhi Ourway to deal with this is to use an indirect jump instead
generating the dynamic superinstruction, we use statiaksta©f the direct jump. Since exceptions are rarely thrown and,
caching or static superinstructions without having to aters When thrown, cost a lot of time anyway, the additional cost of
complications from quickening, and the threaded code fer ththe indirect jump is negligible.

first execution need not use these optimizations. We implement the indirect call by putting the addresses
of the throw code in a local variable, and then jumping to it

with goto *. We have to take some care to confuse the con-
4. Relocatability and exceptions stant propagatidn otherwise gcc will “optimize” the indirect

Only Ijelocatable real-machjne code can be used in dynamiGye make the local variable appear to be non-constant by gain
superinstructions (see Section 2.1). In order to be reddd®t assignment of another value to it in some code fragment phgars
a code fragment must not contain relative references tetsirg to be reachable.

branch back into a direct branch. An additional problem igxplanation for this is that Cacao converts many instrastio
that we have to work around the bugs that recent gccs have and apparently most of the frequently-executed ones) into
this area: PR15242 and PR25285. quick instructions already during the translation fromebyt
Both SableVM [GHO03] and Casey et al.'s work [CEGO05] code (so there is no need to quicken them at run-time and they
solve this problem in a way similar to out'sbut they do not can be integrated into superinstructions like ordinaryrirss
discuss it in their papers, and do not provide data about th®ns), whereas SableVM goes through the slow-instruction

effectiveness of this work. stage for all slow instructions in the bytecode.
Another interesting result is that, despite Java's remnat
5. Empirical results for bloat, replication does not hurt much on any of the bench-
marks, not even on the Pentium 4 and Ill with their small I-
51 Setup caches. So at least the SpecJVM98 benchmarks have good

The hardware we used in our experiments was a 2.2GHgmporal locality. Implementing the non-replication opti
Athlon 64 X2 4400+, a 2.26GHz Pentium 4, and a 1GHzost only three hours of work, so it may still be worthwhile
Pentium I1I. The main difference between these CPUs for ou@s an option) for CPUs that do not predict indirect branches
experiments is in the size of the instruction cache: whike thwith BTBs.

I-cache of the Athlon 64 is relatively large (64KB), it is nfuc

smaller in the Pentium 11l (16KB) and the Pentium 4 (12K5.3 Other systems

microinstructions); so, negative effects of replicatidrowid Figure 10 shows the performance of various other JVM sys-
become visible on the latter CPUS first. tems, both interpreters and JIT/mixed-mode systems com-
All systems were running under Linux 2.6.13 or 2.6.145164 to the Cacao interpreter with dynamic superinstruc-
We used SpecJVM98 as benchmark; we ran each benchmajs.
three times, and report the median result. The first interesting result is that already thl@in Cacao
interpreter (without superinstructions) is quite compete
Surprisingly, it regularly beats even SableVM (which doss u
We benchmarked a threaded-code Cacao interpreter withaggnamic superinstructions), probably thanks to betteisteg
any kind of superinstructionglain), and the Cacao inter- allocation.
preter with dynamic superinstructions with all combinatio The Cacao interpreter with dynamic superinstructions
of the following variants: (+throw soph +repl) is quite a bit faster, as discussed above.
JIT and mixed-mode systems are generally even faster
cept, usually, Kaffe). The most comparable of thesefis, o

5.2 Superinstructions

throw Instructions that can throw an exception canngt ((ex

or can (+) be integrated in a dynamic superinstructiongrse ‘the Cacao JIT compiler, which provides speedups by

(Section 4). up to a factor of 3.3. So, dynamic superinstructions provide
simple/soph The approach used for dealing with quickening:performance that is halfway between plain threaded code and

simple (Section 3.2) or our sophisticated solution (Seca JIT compiler, for much less than half the effort.

tion 3.4).

replication Without or with replication (Section 2.2). 6. Related work

We compiled the Cacao interpreter with gcc-2.95. We usedihe work most closely related to our work is the work on dy-
GNU Classpath 0.19 as Java library for Cacao. namic superinstructions in the JVM in SableVM [GHO03] and

One thing worth noting is that the performance of theby Casey et al. [CEGO5, Section 5.4]. Both papers discuss the
Cacao interpreter is strongly influenced by how many VMproblem of combining quickening with dynamic superinstruc
registers end up in real-machine registers. In the presesat c tions; the sophisticated solutions they present are mare co
we managed to get the most important VM registers (ip, splex than our sophisticated solution (for a more detailed di
TOS) in real-machine registers, but with more recent gccussion, read Section 3.3). One significant differenceas th
versions, or when compiling the interpreter into a dynafhica we use a JIT-style translation, which allows us to use quick
linkable library, the results are significantly worse. Wedis instructions right from the start in many cases, and thisesak
the same interpreter executable for all these measuremertise simple approach competetive, whereas SableVM always
with the variants determined by command-line options. Thigoes through the slow instructions, and sees a big slowdown
ensures that all the variants use the same register abocati from the simple approach. Another difference between our

Figure 8, 9 show the timing results; for space reasons weork and the previous ones is that we discuss the issue of the
do not show the Pentium Il results, but they are similar ® thrrelocatability of instructions that can throw exceptioaad
Athlon 64 X2 results. we present results.

We see that the best variant of dynamic superinstructions Choi et al. [CGHS99] point out the large effect that poten-
provides a huge speedup over plain threaded code, compgal exception-throwing instructions have on a JIT compile
rable to the effects we saw for Forth [EGO03]. The speedupnd present some solutions in that context, but do not discus
is even bigger on the Pentium 4 (which we did not measurer solve the problems that are addressed in the present paper
earlier), probably because this CPU has a relatively higher With static superinstructions the set of superinstructien
branch misprediction penalty. fixed at interpreter build time (or earlier). Static supsetinc-

Looking at the variations, we see th&irow has a large tions, and the related, but more complex concepts of super-
performance effect. By contrast, both replication and adr s combinators [Hug82] and superoperators [Pro95, HATvdW99]
phisticated quickening usually have a small and not considtave been used for a long time in interpreters. This includes
tently positive effect on performance. an earlier version of the Cacao interpreter [EGKPO02]; int tha

Our result for our sophisticated quickening is remarkablevork we did not encounter the conflict between superinstruc-
because the results for SableVM show a large speedup of gens and quickening, because that version of Cacao (incor-
phisticated quickening over simple quickening [GHO3]. Ourrectly) initialized classes on compiling, not on first exéon.

So one of the advances of this work over the earlier work is
8 Email communications with Etienne Gagnon and David Gregg. a proper solution for this conflict. The other important eliff

Eplain

Athlon 64 X2

-throw simple -repl B -throw soph -repl -throw simple +repl B-throw soph +repl

speedup

M +throw soph +repl

+throw simple +repl

M +throw soph -repl

+throw simple -repl

2.81
1.4
1.01

jess db javac mpegaudio mtrt jack

compress

Figure 8. Speedup of dynamic superinstruction variants @lain on an Athlon 64 X2 4400+ (log. scale)

Hplain

Pentium 4

l-throw soph +repl
W +throw soph +repl

-throw simple +repl
+throw simple +repl

M -throw soph -repl
W +throw soph -repl

-throw simple -repl
+throw simple -repl

speedup
41
2.81
2

1.41
1.01

jess db javac mpegaudio mtrt jack

compress

Figure9. Speedup of dynamic superinstruction variants @lain on a 2.26GHz Pentium 4 (log. scale)

+throw soph +repl
kaffe jit

plain

ZHotSpot int Z'J9 int SableVM
jrockit

gij

ElJamVM

Z Kaffe int

¥ Jikes RVM

J9 mixed

7:cacao jit FIHotSpot mixed

speedup Athlon 64 X2

10

o I I IR I I IR I I
ANAARRARARARA R AR AR

AULRUAUAAAS AR AR AR AN AN
hadadasissasssdadasssiasassass
o N ey
ANNAN

B o o o o o o S S I I IIIIIIIIIIINNNNG
ANAARAARARARARARARARARRRRRAR RO

ALTLLTAA AR AR AR AR ANAN AN
liddddddddiidddsdddddadsdiissdaadd
B ey
ANANANNANY

jess db javac mpegaudio mtrt jack

compress

Figure 10. Relative speeds of various JVM systems on an Athlon 64 X2 44@. scale)

ence between these earlier works and this work is that in thAcknowledgments

work we look at dynamic superinstructions.

Dynamic superinstructions [RS96, PR98] (also known a
selective inlining) are a relatively recent invention. Rep
tion [EGO03] was developed to improve BTB indirect branch

The anonymous reviewers provided comments that helped
fmprove this paper.

prediction accuracy, and combines nicely with dynamic suRReferences

perinstructions for improved performance with reduced im{Bel73]
plementation effort. The present work applies these cdscep
in the context of the JVM, and solves the problems that arisgeGos)
in this context: combining dynamic superinstructions wfita
quickening optimization; and ensuring that VM instructon
that can throw exceptions can be included in superinstruc-
tions. [CGHS99]

As a further step after dynamic superinstructions with
replication, one can generate code that includes immediate
guments and performs control flow directly instead of thfoug
the threaded code, turning the system into a simple native-
code compiler. The work based on Forth [EG04b] showed gEG03]
nice speedup, but the work based on Tcl [VA04] did not show
a speedup over the baseline interpreter (without supeuiist
tions or replication) for many application benchmarks, be-
cause it led to a large increase in I-cache misses. Thisgmobl
would certainly also arise in an implementation of dynamidEG04a]
superinstructions with replication (where the resultingeis
typically a little bit larger than for the more advanced tech
nique above). Therefore, we were a little worried, how wel[EG04b]
dynamic superinstructions and especially replication ldiou
work for the JVM; we answer these questions in the present
work.

[EGKP02]

7. Conclusion

Applying dynamic superinstructions and replication to the
JVM poses two challenges, which we solve in this paper: [GHO3]

e These optimizations conflict with thquickening opti-
mization for the first-execution resolution of constant-
pool references. A simple approach just excludes S|O\f{_| ATVAW9O]
instructions from dynamic superinstructions. As our em-
pirical results show, this method works well enough in
the context of a JIT-style compiler with method granu-
larity, because it usually translates slow instructions to
quick instructions already when generating the dynamig4ugs2]
superinstruction.

We also present a more sophisticated approach that is eas-
ier to implement than previous sophisticated approachdsy97]
and is useful if the system does not use JIT-style transla-
tion to threaded code.

Instructions that can throw an exception would normallylPR98]
have non-relocatable real-machine code and could not be
included in dynamic superinstructions, leaving a lot of the
speedup potential from dynamic superinstructions unused.

We solve this problem by converting the direct branche&r095]
to the throwing code (which are the cause of the non-
relocatability) into indirect branches (which are relacat

able).

[RS96]

We also present empirical results on a number of plat-
forms: The overall speedup we see is quite large, up to a
factor of 4, with a factor of about 2 being more typical. The
effect of making instructions that can throw exceptions+el VA4]
catable is also quite large (up to a factor of 2). Replicatio*
has a relatively small effect. A simple approach to quickgni
combined with a JIT-style translation into threaded codiawi
dynamic superinstructions usually works about as well as a
sophisticated approach to quickening.

James R. Bell. Threaded code@ommunications of
the ACM 16(6):370-372, 1973.

Kevin Casey, M. Anton Ertl, and David Gregg.

Optimizing indirect branch prediction accuracy in
virtual machine interpreters. Submitted to ACM
TOPLAS, 2005.

Jong-Deok Choi, David Grove, Michael Hind, and
Vivek Sarkar. Efficient and precise modeling

of exceptions for the analysis of Java programs.
In Program Analysis for Software Tools and
Engineering (PASTE'9911999.

M. Anton Ertl and David Gregg. Optimizing indi-

rect branch prediction accuracy in virtual machine
interpreters. ISIGPLAN '03 Conference on Pro-

gramming Language Design and Implementation
2003.

M. Anton Ertl and David Gregg. Combining stack
caching with dynamic superinstructions. IMME
'04 Proceedingspages 7-14, 2004.

M. Anton Ertl and David Gregg. Retargeting JIT
compilers by using C-compiler generated executable
code. InParallel Architecture and Compilation
Techniques (PACT’ 04pages 41-50, 2004.

M. Anton Ertl, David Gregg, Andreas Krall, and
Bernd Paysanvmgen — a generator of efficient
virtual machine interpretersSoftware—Practice
and Experience32(3):265—-294, 2002.

Etienne Gagnon and Laurie Hendren. Effective
inline-threaded interpretation of java bytecode using
preparation sequences. @ompiler Construction
(CC '03), volume 2622 ofLNCS pages 170-184.
Springer, 2003.

Jan Hoogerbrugge, Lex Augusteijn, Jeroen Trum,
and Rik van de Wiel. A code compression system
based on pipelined interpreterSoftware—Practice
and Experience29(11):1005-1023, September
1999.

R. J. M. Hughes. Super-combinators.anference
Record of the 1980 LISP Conference, Stanford, CA
pages 1-11, New York, 1982. ACM.

Tim Lindholm and Frank Yellin. The Java Virtual
Machine SpecificatianAddison-Wesley, first edition
edition, 1997.

lan Piumarta and Fabio Riccardi. Optimizing direct
threaded code by selective inlining. 8IGPLAN

'98 Conference on Programming Language Design
and Implementatignpages 291-300, 1998.

Todd A. Proebsting. Optimizing an ANSI C
interpreter with superoperators. Rrinciples of
Programming Languages (POPL '95)ages 322—
332, 1995.

Markku Rossi and Kengatharan Sivalingam. A
survey of instruction dispatch techniques for
byte-code interpreters. Technical Report TKO-
C79, Faculty of Information Technology, Helsinki
University of Technology, May 1996.

Benjamin Vitale and Tarek S. Abdelrahman. Cate-
nation and specialization for Tcl virtual machine
performance. INVME '04 Proceedingspages 42—
50, 2004.

