
Delayed Exceptions | Speculative Execution ofTrapping InstructionsM. Anton Ertl Andreas KrallInstitut f�ur ComputersprachenTechnische Universit�at WienArgentinierstra�e 8, A-1040 Wienfanton,andig@mips.complang.tuwien.ac.atTel.: (+43-1) 58801 f4459,4462gFax.: (+43-1) 505 78 38Abstract. Superscalar processors, which execute basic blocks sequentially,cannot use much instruction level parallelism. Speculative execution has beenproposed to execute basic blocks in parallel. A pure software approach suf-fers from low performance, because exception-generating instructions cannotbe executed speculatively. We propose delayed exceptions, a combination ofhardware and compiler extensions that can provide high performance andcorrect exception handling in compiler-based speculative execution. Delayedexceptions exploit the fact that exceptions are rare. The compiler assumes thetypical case (no exceptions), schedules the code accordingly, and inserts run-time checks and �x-up code that ensure correct execution when exceptionsdo happen.Key Words: instruction-level parallelism, superscalar, speculative execution, excep-tion, software pipelining1 IntroductionComputer designers and computer architects have been striving to improve unipro-cessor performance since the invention of computers[JW89, CMC+91]. The nextstep in this quest for higher performance is the exploitation of signi�cant amountsof instruction-level parallelism. To this end superscalar, superpipelined, and VLIWprocessors1 can execute several instructions in parallel. The obstacle to using theseresources is the dependences between the instructions. Scheduling (code reorder-ing) has been employed to reduce the impact of dependences. However, the averageinstruction-level parallelism available within basic blocks is less than two simultane-ous instruction executions [JW89].To circumvent this barrier several methods have been developed to execute basicblocks in parallel. They are based on speculative execution, i.e. the processor exe-cutes instructions from possible, but not certain future execution paths. This can beimplemented in hardware through backup register �les, history bu�ers or reservation1 For simplicity, we will use the term \superscalar" in the rest of the paper, but de-layed exceptions can be used with any of the techniques for exploiting instruction-levelparallelism.
Paper and BibTeX entry are available at http://www.complang.tuwien.ac.at/papers/. This paper was published in:
Compiler Construction (CC ’94), Springer LNCS 786, 1994, pages 158-171



stations [Tom67, HP87, SP88, Soh90]. A less expensive approach relies on compilertechniques for global instruction scheduling like trace scheduling, software pipeliningand percolation scheduling [RG81, Fis81, Ell85, Nic85].Exceptions pose serious problems to compiler-only approaches: The compilermust not move exception-generating instructions up across conditional branches(unless the instruction appears in all directions that the branch can take). E.g.,a load that is moved up across its guardian NULL pointer test will trap wrongly. Inaddition, exception-generating instructions must not be reordered with respect toother exception-generating instructions, because the order of the exceptions wouldbe changed. All these control dependences restrict the instruction-level parallelism toa low level: It is hardly higher than the level possible without speculative execution.In this paper we propose delayed exceptions, a technique that combines low hard-ware cost, high performance and correct exception handling by putting most of theresponsibility for exception handling on the compiler. Delayed exceptions can beimplemented as a binary compatible extension of current architectures.2 The Basic IdeaDelayed exceptions exploit the fact that exceptions are rare. The compiler assumesthe typical case (no exceptions), schedules the code accordingly, and inserts run-timechecks and �x-up code that ensure correct execution when exceptions do happen.To implement this idea, every register is augmented with an exception bit; twoversions of exception-generating instructions are needed: The trapping version isused in non-speculative execution and behaves traditionally. The trap-noting ver-sion is used for speculative execution; it does not trap, but notes in the trap bitof the result register whether the instruction would have trapped. This trap-notinginstruction can be moved around as freely as other non-trapping instructions. In-structions dependent on that instruction can then also be moved up by speculatingon the outcome to the exception-checking branch.Finally a branch instruction checks trap-notes and branches to the �x-up code ifnecessary. The �x-up code triggers the trap and recalculates registers that receivedwrong values. The �x-up code is subject to the same control dependences that theexception-generating instruction was originally.3 A Motivating ExampleWe will introduce the concept of delayed exceptions by a small example. Figure 1shows the C function strlen which computes the length of a zero-terminated string.Figure 2 shows the assembly language output of a compiler for the MIPS R3000. Wehave changed the register names to make the program more readable.The problem in software pipelining this loop is the lb (load byte) instruction,which can trap on illegal memory access. Assuming a two-cycle load latency anda one-cycle branch latency, each iteration needs three cycles even on a superscalarprocessor, unless delayed exceptions are used to enable speculative execution of thelb.



int strlen(char *s) {char *t = s;while (*s != '\0')s++;return s-t;}Fig. 1. The C function strlen# 1 int strlen(char *s) {strlen:# 2 char *t = s;move t,s # t=s# 3 while (*s != '\0')lb t0,0(s) # t0=*sbeqz t0,end # while (t0 != '\0')loop:# 4 s++;addu s,s,1 # s++lb t0,0(s) # t0=*sbnez t0,loop # while (t0 != '\0')end:# 5 return s-t;subu v0,s,t # return_value = s-tj ra # returnFig. 2. MIPS R3000 assembly language source of function strlenmove t,slbx0 t0,0(s) addu0 s,s,1lbx1 t1,0(s) addu1 s,s,1loop0: lbxn t2,0(s) addun s,s,1 bxn�2 t0,xcept0 beqzn�2 t0,ret0loop1: lbxn+1 t0,0(s) addun+1 s,s,1 bxn�1 t1,xcept1 beqzn�1 t1,ret0loop2: lbxn+2 t1,0(s) addun+2 s,s,1 bxn t2,xcept2 bnezn t2,loop0ret0: subu s,s,3ret1: subu v0,s,t j raxcept0: lbn�2 t0,-3(s) bnezn�2 t0,loop1subu s,s,3 b ret1xcept1: lbn�1 t1,-3(s) bnezn�1 t1,loop2subu s,s,3 b ret1xcept2: lbn t2,-3(s) bnezn t2,loop0subu s,s,3 b ret1Fig. 3. Software pipelined version of Fig. 2 with delayed exceptions



We software pipelined this code using delayed exceptions (see Fig. 3). We un-rolled the loop thrice and renamed registers to eliminate write-after-read (WAR)dependencies. The loop now executes in one cycle/iteration on a hypothetical su-perscalar processor2 , unless an exception occurs. We assume that the processor hasenough resources to execute one line (of Fig. 3) per cycle.A few words of explanation are necessary. lbx (load byte and note exception)is the trap-noting version of lb; It sets the exception bit of the result register if anexception occurs and clears it otherwise. If one of the earlier bytes was zero, thefunction will return without ever seeing the bx belonging to the lbx. I.e., exceptionscaused by wrong speculations are ignored. However, if the speculation was right,the bx will be executed; If the exception bit is set, the bx (branch on exception bit)instruction branches to the �x-up code. In the present case, the �x-up code consistsof a lb that accesses the same address as the lbx and thereby calls the trap handler.The indices of the instructions indicate the iteration the instructions belong to.The addu is executed speculatively, too. We could have renamed registers to savethe old value of s for the o�-loop execution paths and for the �x-up code. Instead,our code repairs s by subtracting 3.4 The Compiler Technique4.1 The Percolation Scheduling FrameworkPercolation scheduling is a general framework for global instruction scheduling [Nic85].It contains a few core transformations for moving instructions. Enabling transforma-tions (e.g. register renaming) give the core transformations greater freedom to movethe code. Guidance rules decide when and where to apply the transformations.In this framework, the exception delaying transformation described below is anenabling transformation.Delayed exceptions can also be �tted into other global scheduling models. E.g.,in the context of trace scheduling [Fis81, Ell85], exception-generating instructionswould be moved around freely; the �x-up code is inserted by the book-keeping pro-cess.4.2 The Exception Delaying TransformationThe basic transformation used in delayed exceptions is shown in Fig. 4. The trappinginstruction is split into a trap-noting instruction and the exception-checking branchbx to the �x-up code.The �x-up code must trigger the trap and set the registers to the correct values.Before applying other transformations, the only register to be recomputed is theresult register of the instruction. These functions are performed by the trappingversion of the instruction3.2 We did not exploit more parallelism (e.g. by combining [NE89] the addus or by speculatingin both directions) in order to keep the example simple.3 Of course, the transformation should not be reapplied to the trapping instruction in the�x-up code.



trapping instruction

. . .

trapping instruction

bx

trap-noting instruction

. . .

fix-up codeFig. 4. The exception delaying transformationThe trapping version of the instruction in the �x-up code is still subject to theold control-dependences, i.e. it must not be moved across other trapping instructions(this preserves the order of exceptions) or up across branches.This transformation may appear to be a bad deal, because it increases the num-ber of executed instructions. However, on superscalar processors the execution timeis determined mainly by dependences between instructions. Due to the dependencesthere are often idle resources (instruction bandwidth, functional units); these re-sources can be utilized for executing independent instructions without increasingexecution time. Therefore, replacing dependences with additional instructions is of-ten a win.4.3 Enabled transformationsThe exception delaying transformation is an enabling transformation. First of all,it enables the compiler to move the trap-noting version of the instruction up acrossbranches (i.e. speculative execution of the instruction). More importantly, it alsomakes speculation on the outcome of the trap-check possible. I.e., instructions thatdepend on the exception-generating instruction can be moved up across the exception-checking branch and other branches.How is this done? When moving the instructions up into the branches of theexception-checking conditional, both branches get a copy of the instruction. The copyin the �x-up code stays there, bound by the dependence on the trapping instruction,while the other copy can move further up until it reaches the trap-noting instruction.The code motions have to take the data dependences into account, so the sourceregisters of the operations in the �x-up code are preserved, since they are live untilthe �x-up code. Transformations like register renaming or repairing [EK92] can beused to remove these dependences and enable further moves. The trap-notes have tobe treated like normal registers, i.e. the trap-noting instruction is a de�nition andthe trap-check is a use (see Section 5.3).



if (p != NULL) {i = j + p->info;p = q;...}Fig. 5. A common C fragment
beqz l

addumove

write after read

read after write

i,t0 dead

beqz p,endif

l t0,info(p)

move p,q

addu i,j,t0Fig. 6. Assembly version of Fig. 5
write after read

read after write

write after write

beqz

addumove

l

lx

bx

i,t0 dead

beqz p,endif

l t0,info(p)

bx t0,xcept

move p,q

lx t0,info(p)

addu i,j,t0Fig. 7. Figure 6 after the exception delaying transformation



write after read

read after write

write after write

beqz

move

l

lx

bx

addu2

addu1

i,t0 dead

beqz p,endif

l t0,info(p)

bx t0,xcept

move p,q

lx t0,info(p)

addu i,j,t0

addu i,j,t01

2Fig. 8. Figure 7 after another code motionAs an example, we transform a typical C idiom (see Fig. 5). Figure 6 showsits assembly language version and the data dependence graph. Let us assume thatthere is a need to move the operations up in order to reduce the impact of laterdependences. First we apply the exception delaying transformation (see Fig. 7). Thenwe try to move the other instructions (see Fig. 8). This is possible with the addu, butthe move cannot be moved above the bx, since it would destroy the source register ofthe l (this is represented as a write-after-read dependence in the data dependencegraph).4.4 Controlling the Code ExpansionThe example also shows a possible problem with delayed exceptions: code explosion.The two remedies used in the context of run-time disambiguation [Nic89] should workwell for delayed exceptions, too: applying delayed exceptions only to frequently usedprogram parts; and using one piece of �x-up code for several trapping instructions.Finally, the cache and paging behaviour can be improved by moving the �x-up codeout-of-line into extra pages. An upper bound for the size of the recovery code isthe original code size times the average depth of speculation, if there is one piece ofrecovery code per (non-bx) branch.



5 Architectural Considerations5.1 Which Instructions are A�ectedA program can trap on memory access exceptions, arithmetic exceptions (overowand divide by zero) and explicit trap instructions.Memory access exceptions can be generated by loads and stores. Loads can beeasily executed speculatively using delayed exceptions. Stores alter memory, so theycan hardly be undone. Therefore exceptions are not the only obstacle to speculativeexecution of stores. Fortunately there is no need to execute stores speculatively, sincedependences on the store can be eliminated by run-time disambiguation [Nic89] andregister renaming. Therefore a trap-noting store is neither necessary nor sensible.Arithmetic exceptions can be generated by many oating-point and integer in-structions. Trap-noting versions of these instructions are needed. Instructions thatalso have a non-trapping version (e.g. add (trapping) and addu (non-trapping)) area special case. Instead of producing a third version, the non-trapping instructioncould be changed into a trap-noting instruction in this case. However, this can a�ectregister allocation, as explained in Section 5.3. The architect has to balance opcodewaste against a (probably tiny) performance loss due to possible spilling.Trap instructions are usually used for system calls, emulation of non-implementedhardware or bounds checks. Noting a trap early by speculation o�ers no advantages.Therefore trap-noting versions of trap instructions do not make sense.5.2 Accessing the exception bitsThe exception bits have to be conserved across context switches. Therefore they canbe read and written through (a) special control register(s). Before reading them theymust be up-to-date. This can be achieved by waiting until all pipelines have run dry.This possibility of access can prove useful for other situations, too: Interrupthandlers can use delayed exceptions, if they save and restore the exception bits. Itcould even be used for saving and restoring around procedure calls, enabling betterscheduling across calls. Of course this would require user-level access to the exceptionbits and a faster method than letting the processor run dry.5.3 Noting the ExceptionIn the examples above, the exception is noted by a bit associated with the resultregister of the trap-noting instruction. This provides for simple adressing, but re-stricts register allocation: The register may not be used as the result register of atrap-noting instruction until the note is dead, i.e. until it is checked or an executionpath is chosen that does not contain the check (i.e. an execution path that wouldnot have contained the trapping instruction in the �rst place).As an alternative, the notes could be addressed explicitly and allocated sepa-rately. This would make register allocation easier, but trap-noting instructions wouldneed extra bits in the instructions for addressing the note.



5.4 Precise ExceptionsSome instructions (e.g. memory access and oating point on the MC88100) can causeexceptions late in the pipeline, when other, later instructions have already modi�edthe processor state. Therefore, the processor cannot be simply restarted from thefaulting instructions. These imprecise exceptions have several disadvantages, e.g.they make exception handlers implementation-dependent. In order to implementprecise interrupts, many expensive hardware schemes for restoring the processorstate have been proposed [SP88, HP87].Delayed exceptions open the road to precise exceptions without any backup hard-ware: The exception delaying transformation must be applied to every instructionin the program that can cause imprecise exceptions. In the �x-up code, a specialinstruction tx (trigger exception) is prepended to the trapping instruction. tx trapsearly and therefore precisely.There's just one problem: The trap does not occur at the instruction that origi-nally caused the exception, but at the tx. However, the compiler makes sure that theinput registers have the right values for rerunning the exception-causing instruction.4In addition to the values of the registers, the exception handler usually wants to knowthe exception-causing instruction and the type of the exception. The latter can bestored in the exception note (which has to be extended for this purpose), while theinstruction resides just after the tx.5.5 Page FaultsLike on any other processor, instruction fetch page faults are handled immediately.Data access page faults caused by a trap-noting instruction are noted like otherexceptions and later handled in the �x-up code, if the processor executes the ap-propriate path. If a di�erent path is executed, the note has no e�ect. This is anadvantage over the approach proposed for general percolation [CMC+91], wherespeculative page faults are always serviced, even if they are not needed.5.6 Instruction Issue BandwidthIn the programs we measured (see Section 6) 16%{24% of the dynamically executedinstructions can generate exceptions. Since this is nonnumerical code, most of theseinstructions will be executed speculatively on a high-degree superscalar machine.Each of these speculatively executed instructions would add a bx instruction tothe instruction stream. Delayed exceptions increase the needed instruction issuebandwidth by up to 24% and need additional functional units for executing the bxinstructions. These needs can be reduced by having bx instructions that test severalnotes and branch to a combined piece of �x-up code.4 These are the same compiler techniques that ensure correct processing of delayed excep-tions (see Section 4.3).



6 Potential SpeedupTo evaluate the potential bene�t of delayed exceptions, we performed a trace-drivensimulation [BYP+91, Wal91, LW92]. To get an upper bound, we assumed in�niteresources (instruction bandwidth, functional units), perfect register renaming, per-fect alias detection, and perfect branch prediction. To have a few machine modelsbetween the extremes, we restricted perfect branch prediction, to predict only thenext n branches. Note that 0 predicted branches prevents speculative execution, butsome global scheduling is still possible: instructions can be moved down.In other words, for our perfect model, we considered only read-after-write (RAW)dependences, through both registers and memory, and dependences from branchesto all later stores. For limited branch-prediction we added dependences betweenbranches and all instructions that are more than n branches later in the trace.Without delayed exceptions, we also added dependences between branch instructionsand all later exception-generating instructions.5Throughout the simulations, we used the latencies of the R3000 processor (e.g.2-cycle loads). The instruction level parallelism is computed by dividing the numberof instructions by the critical path length of the dependence graph.The benchmark programs used are: an abstract Prolog machine interpreter (Pro-log), an instruction scheduler (sched), and compress 4.1 (compress). They were com-piled on a DecStation 5000 with the manufacturer's C compiler and then run withtypical input to produce traces. Due to limitations of our tracer we produced andanalysed only short traces (� 500; 000 instructions).The results are shown in Fig. 9. Without delayed exceptions, even perfect branchprediction gives only speedups of 1.08{1.31 over having no speculation. This clearlyshows that speculative execution is hardly worth bothering, if it cannot be applied toexception-generating instructions (another variation of Amdahl's Law). Even withonly one-deep speculation delayed exceptions beat the perfect model without delayedexceptions. In other words: Every machine that has enough resources to pro�t fromspeculative execution will pro�t from delayed exceptions. The perfect models di�erby a factor of 3.8 (sched), 7.4 (compress) and 9.5 (Prolog).The improvement on a realistic machine with a real scheduling algorithm is ofcourse somewhat lower, but still impressive: Mahlke et al. report a speedup of 18%{135% (average 57%) for sentinel scheduling (see Section 7) on non-numeric programsfor a superscalar processor of degree 8 [MCH+92]. They report an average speedupof 32% for numeric benchmarks. Delayed exceptions should give similar results.7 Related WorkIgnoring exceptions by using non-trapping instructions has been proposed for cir-cumventing the problem [CMC+91]. Instead of trapping on e.g. an illegal memory5 A compiler could use control-dependence analysis to move instructions up across branchesin a non-speculative way. If our simulation took this into account (i.e. did not count thosebranches), it would result in a somewhat higher instruction-level parallelism for all modelsbut the perfect model. Due to the data given in [LW92] and Amdahl's Law we believethat the e�ect of this optimization would not be very large and would not change ourconclusions.



predicted branches

instructions/cycle

0 1 2 4 8 16 32 64 128 256 perfect
1

2

4

8

16

32

without with
delayed exceptions

Prolog
compress

sched

Fig. 9. Instruction-level parallelism with and without delayed exceptionsaccess, a garbage value is returned. The justi�cation for this behaviour is that correctprograms do not trap. Unfortunately this justi�cation is wrong. Exceptions are usedin many applications. [AL91] lists several applications of memory access exceptions.Besides, in our opinion the assumption of completely correct programs is unrealistic.Delayed exceptions solve the problem instead of ignoring it.Speculative loads [RL92] note the exception in a bit associated with the resultregister. The �rst instruction that uses the result triggers the trap. This meansthat the load can be executed speculatively, but not its use. In contrast, delayedexceptions permit arbitrary chains of speculative operations.The TORCH architecture [SLH90, SHL92, Smi92] uses programmer-visible shadowregister �les for compiler-based speculative execution. TORCH as described in [SLH90]can handle exceptions using a reexecution scheme implemented in hardware. In themeantime they have switched to using compiler-generated recovery code. In con-trast to delayed exceptions, TORCH uses hardware to restore the state before theexception and then executes the recovery code. TORCHs recovery code containsall speculative instructions since the exception, while our �x-up code contains onlyinstructions that dependent on the trap-noting instruction.Sentinel scheduling [MCH+92] uses a bit in every instruction that says whetherthe instruction is executed speculatively. Speculative instructions set and propagate



exception bits; the �rst non-speculative instruction triggers the trap (if the bit isset). Recovery is performed by reexecuting the whole code starting from the in-struction that caused the exception. The bottom-line di�erences between delayedexceptions and sentinel scheduling are: Sentinel scheduling does not preserve theorder of the exceptions; It doubles the number of opcodes, whereas delayed excep-tions only double the exception-generating instructions. Sentinel scheduling needsspecial hardware for propagating the exception bits and the address of the exception-generating instruction; and it produces more register pressure (the source registersfor all instructions between speculative instruction and sentinel have to be preserved,while our �x-up code needs only the source registers for instructions that dependon the trap-noting instruction); it cannot move exception-generating instructionsbeyond irreversible instructions like stores. Delayed exceptions use more instructionbandwidth (for exception-checking branches) and they produce more code (�x-upcode).Write-back suppression [BMH+93] is speci�c to superblock6 scheduling. It useshardware to suppress the register �le updates by the excepting instruction and allsubsequent instructions that have the same or higher speculation distance. If exe-cution reaches the home basic block of the excepting instruction, these instructionsare reexecuted by hardware with write-back and trapping enabled. This mechanismproduces less register pressure than delayed exceptions, because the hardware en-sures that instructions that will be reexecuted later will not write over registersneeded during reexecution. The main disadvantage of write-back suppression is itsrestriction to superblock scheduling and unidirectional speculation.8 ConclusionSpeculative execution is the key to making optimal use of superscalar processors.However, in a pure compiler-based approach exception-generating instructions mustnot be executed speculatively. This restriction virtually eliminates speculative exe-cution and its advantages.In the spirit of RISC technology, delayed exceptions combine a simple hardwareextension with sophisticated compiler techniques to solve this problem. Speculativeexception-generating instructions just note the exception in a bit associated with theresult register. If the speculation was right, the bit is checked by a special branchinstruction. If the bit is set (i.e. there was an exception), it branches to compiler-generated �x-up code. This code triggers the trap and ensures correct recovery.Delayed exceptions permit the compiler to move exception-generating instructionsas freely as non-trapping instructions.Trace-driven simulation shows that every processor that pro�ts from speculativeexecution (e.g. most superscalar processors) would pro�t from delayed exceptions.The upper bound for speedups achievable by delayed exceptions for the studiedtraces is 3.8{9.4.6 A superblock can be entered only from the top, but can be left at several points.



AcknowledgementsThe referees, Thomas Pietsch and Franz Puntigam provided valuable comments onearlier versions of this paper. Section 5.2 was inspired by the \Trapping speculativeops" discussion on the Usenet news group comp.arch, especially by Stanley Chowand Cli� Click.References[AL91] Andrew W. Appel and Kai Li. Virtual memory primitives for user programs.In ASPLOS-IV [ASP91], pages 96{107.[ASP91] Architectural Support for Programming Languages and Operating Systems(ASPLOS-IV), 1991.[ASP92] Architectural Support for Programming Languages and Operating Systems(ASPLOS-V), 1992.[BMH+93] Roger A. Bringman, Scott A. Mahlke, Richard E. Hank, John C. Gyllenhaal,and Wen-mei W. Hwu. Speculative execution exception recovery using write-back suppression. In 26th Annual International Symposium on Microarchitec-ture (MICRO-26), pages 214{223, 1993.[BYP+91] Michael Butler, Tse-Yu Yeh, Yale Patt, Mitch Alsup, Hunter Scales, and MichaelShebanow. Single instruction stream parallelism is greater than two. In ISCA-18 [ISC91], pages 276{286.[CMC+91] Pohua P. Chang, Scott A. Mahlke, William Y. Chen, Nancy J. Warter, andWen-mei W. Hwu. IMPACT: An architectural framework for multiple-instruction-issue processors. In ISCA-18 [ISC91], pages 266{275.[EK92] M. Anton Ertl and Andreas Krall. Removing antidependences by repairing.Bericht TR 1851-1992-9, Institut f�ur Computersprachen, Technische Universit�atWien, 1992.[Ell85] John R. Ellis. Bulldog: A Compiler for VLIW Architectures. MIT Press, 1985.[Fis81] Joseph A. Fisher. Trace scheduling: A technique for global microcode com-paction. IEEE Transactions on Computers, 30(7):478{490, July 1981.[HP87] Wen-mei Hwu and Yale N. Patt. Checkpoint repair for high-performance out-of-order execution machines. IEEE Transactions on Computers, 36(12):1496{1514,December 1987.[ISC91] The 18th Annual International Symposium on Computer Architecture (ISCA),Toronto, 1991.[JW89] Norman P. Jouppi and David W. Wall. Available instruction-level parallelismfor superscalar and superpipelined machines. In Architectural Support for Pro-gramming Languages and Operating Systems (ASPLOS-III), pages 272{282,1989.[LW92] Monica S. Lam and Robert P. Wilson. Limits of control ow on parallelism. InThe 19th Annual International Symposium on Computer Architecture (ISCA),pages 46{57, 1992.[MCH+92] Scott A. Mahlke, William Y. Chen, Wen-mei W. Hwu, B. Ramakrishna Rau,and Michael S. Schlansker. Sentinel scheduling for VLIW and superscalar pro-cessors. In ASPLOS-V [ASP92], pages 238{247.[NE89] Toshio Nakatani and Kemal Ebcio�glu. \Combining" as a compilation techniquefor VLIW architectures. In 22nd Annual International Workshop on Micropro-gramming and Microarchitecture (MICRO-22), pages 43{55, 1989.



[Nic85] Alexandru Nicolau. Uniform parallelism exploitation in ordinary programs. In1985 International Conference on Parallel Processing, pages 614{618, 1985.[Nic89] Alexandru Nicolau. Run-time disambiguation: Coping with statically unpre-dictable dependencies. IEEE Transactions on Computers, 38(5):663{678, May1989.[RG81] B. R. Rau and C. D. Glaeser. Some scheduling techgniques and an easilyschedulable horizontal architecture for high performance scienti�c computing.In 14th Annual Microprogramming Workshop (MICRO-14), pages 183{198,1981.[RL92] Anne Rogers and Kai Li. Software support for speculative loads. In ASPLOS-V[ASP92], pages 38{50.[SHL92] Michael D. Smith, Mark Horowitz, and Monica S. Lam. E�cient superscalarperformance through boosting. In ASPLOS-V [ASP92], pages 248{259.[SLH90] Michael D. Smith, Monica S. Lam, and Mark A. Horowitz. Boosting beyondstatic scheduling in a superscalar processor. In The 17th Annual InternationalSymposium on Computer Architecture (ISCA), pages 344{354, 1990.[Smi92] Michael David Smith. Support for Speculative Execution in High-PerformanceProcessors. PhD thesis, Stanford University, 1992.[Soh90] Gurindar S. Sohi. Instruction issue logic for high-performance, interruptable,multiple functional unit, pipelined processors. IEEE Transactions on Comput-ers, 39(3):349{359, March 1990.[SP88] James E. Smith and Andrew R. Pleszkun. Implementing precise interrupts inpipelined processors. IEEE Transactions on Computers, 37(5):562{573, May1988.[Tom67] R. M. Tomasulo. An e�cient algorithm for exploiting multiple arithmetic units.IBM Journal of Research and Development, 11(1):25{33, 1967.[Wal91] David W. Wall. Limits of instruction-level parallelism. In ASPLOS-IV [ASP91],pages 176{188.
This article was processed using the LaTEX macro package with LLNCS style


