
Progressive Spill Code Placement

Dietmar Ebner
Vienna Univ. of Technology

ebner@complang.tuwien.ac.at

Bernhard Scholz
University of Sydney

scholz@it.usyd.edu.au

Andreas Krall
Vienna Univ. of Technology

andi@complang.tuwien.ac.at

ABSTRACT
Register allocation has gained renewed attention in the re-
cent past. Several authors propose a separation of the prob-
lem into decoupled sub-tasks including spilling, allocation,
assignment, and coalescing. This approach is largely moti-
vated by recent advances in SSA-based register allocation
that suggest that a decomposition does not significantly de-
grade the overall allocation quality.

The algorithmic challenges of intra-procedural spilling have
been neglected so far and very crude heuristics were em-
ployed. In this work, (1) we introduce the constrained min-
cut (CMC) problem for solving the spilling problem, (2) we
provide an integer linear program formulation for computing
an optimal solution of CMC, and (3) we devise a progressive
Lagrangian solver that is viable for production compilers.
Our experiments with Spec2k and MiBench show that opti-
mal solutions are feasible, even for very large programs, and
that heuristics leave significant potential behind for small
register files.

Categories and Subject Descriptors
D.3.4 [Software]: Programming Languages

General Terms
Algorithms

Keywords
spilling, register allocation, constrained min-cut, SSA form

1. INTRODUCTION
Register allocation is a fundamental optimization in com-

pilers for embedded systems because of the gap between pro-
cessor speed and memory bandwidth of modern computer
architectures. The objective is to assign hardware registers
to program variables. Program variables that are not alive
at the same time can use the same register. If too many

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CASES’09, October 11–16, 2009, Grenoble, France.
Copyright 2009 ACM 978-1-60558-626-7/09/10 ...$10.00.

program variables are alive at the same time, some of the
variables will not fit in the register file and are thus stored
in memory, which we refer to as spilling.

Spilling is costly in terms of code size, performance, and
energy consumption. Code size is increased because of ad-
ditional instructions that are issued to transfer values of
program variables between memory and registers due to
spilling. We refer to these additional instructions as spill
code. Spilling also has a detrimental impact on the execu-
tion time of a program as memory accesses take significantly
longer to execute than register instructions and the overall
energy dissipation suffers because of the higher workload for
the memory system. Thus, whether for general-purpose or
for embedded computing, minimizing the spill overhead is
of paramount importance.

A large fraction of previous work on register allocation
employs the spill-everywhere model, i.e., for spilled program
variable v the compiler issues store instructions after def-
initions of v and load instructions before uses of v. This
approach may lead to a sub-optimal code quality because in
the entire range where the spilled program variable is alive it
is assumed that there are more program variables alive then
registers available. However, this does not hold in practice.

In this paper, we consider a more flexible model also known
as load-store optimization, where live ranges of program vari-
ables are split arbitrarily. Live ranges of program variables
can be split by storing and loading their values to and from
memory, respectively. We seek a minimal-cost placement for
loads and stores caused by spilling such that at most k pro-
gram variables are alive at any point in the program where
k is the number of available registers in the register file.

Spilling has been mainly considered in the context of a
particular register allocation scheme and not as a separate
transformation. Hence, the proposed strategies and met-
rics are often based on the particular program representa-
tion that is used by the register allocation algorithm, e.g.,
live intervals in the case of linear scan allocators or interfer-
ence graphs for graph coloring based techniques. Usually,
spilling is invoked only if the allocation algorithm fails, of-
ten leading to backtracking or iteration of the whole process.
Our approach employs static single assignment (SSA) form
as underlying program representation and complements the
recent advances of register allocation for SSA form.

In summary, the key contributions of this paper are:

1. the constraint min-cut problem, which is a well-defined
combinatorial problem that solves spill-code placement,

2. an integer linear program formulation for the constraint
min-cut problem to compute an optimal solution,

77



3. a Lagrange relaxation algorithm for the constraint min-
cut problem whose precision can be traded for run-time
making the algorithm very suitable for compilers,

4. an experimental evaluation of a state-of-the-art heuris-
tic, an optimal integer linear programming solution,
and a Lagrange algorithm with the Spec2k and MiBench
benchmark suite.

The paper is organized as follows: In Sec. 2 we survey the
related work. In Sec. 3 we present a motivating example
and model the spill code placement as a network problem.
In Sec. 4 we introduce the constraint min-cut problem for-
mally. In Sec. 5 we devise a polynomial time algorithm using
Lagrangian relaxation. In Sec. 6 we provide experimental re-
sults with the Spec2k and MiBench benchmark suite, and
in Sec. 7 we draw our conclusions.

2. RELATED WORK
Chaitin et al. [CAC+81] established the connection of reg-

ister allocation with graph coloring of interference graphs.
Nodes of an interference graph represent program variables
and an edge between two variables imply that they are con-
currently alive at some point in the program. Finding a ver-
tex coloring of an interference graph with at most k colors
where k denotes the number of machine registers, is a NP
complete problem and a solution cannot be approximated
by a constant factor, unless P is equal to NP. The chro-
matic number of an interference graph can be greater than
k and some program variables have to be placed in memory
as a consequence, which we refer to as spilling. Numerous
follow-up papers introduce improvements of Chaitin heuris-
tic for graph coloring on two particular sub-problems: im-
proving colorability and coalescing [CH90, BCT94, GA96,
PM98]. Coalescing aims to eliminate copy instructions of
program variables by assigning both variables the same ma-
chine register. What is common to graph coloring based
approaches and most techniques [GW96, PS99, KG06] pro-
posed is that both register allocation/spilling and coalescing
are considered to be inherent sub-problems that are solved
concurrently.

Appel and George [AG01] were among the first who pro-
posed a two-phase approach where spilling is performed in a
separate phase prior to the actual register assignment prob-
lem. Their work demonstrate that the decomposition of reg-
ister allocation into separate phases does not significantly
degrade the overall code quality. In general it is not guar-
anteed that there is a valid k coloring even if there are no
more than k variables simultaneously live at any given point
in the program. To overcome this problem, the authors in-
troduced parallel copies of program variables, which are to
be removed at a later coalescing phase.

Static Single Assignment (SSA) form [CFR+91] is an in-
termediate representation of programs spliting existing vari-
ables into versions denoted by the original program variable
name and a sub-script describing the version. At confluence
points, new versions of program variables are introduced
that merge several definitions of program variables with so-
called Φ-functions non-deterministically. SSA is called strict
if all uses are dominated by their definition. Interference
graphs of SSA graphs are chordal. This has been discovered
independently by several research groups [HG06, BDMS05,
HGG06, PP05]. A graph is called chordal if each cycle of
length four or more has a chord, which is an edge joining

two non-adjacent nodes in the cycle. As chordal graphs
are a subset of perfect graphs, they inherit their proper-
ties. Most importantly, the chromatic number of perfect
graphs equals the size of the largest clique. This property
even holds for each induced sub-graph. There is a so-called
perfect elimination order that allows to color perfect graphs
optimally in O(n + m) where n is the number of vertices
and m is the number of edges in the interference graph. At
confluence points, Φ-functions introduce swap instructions
for variables that are assigned different registers on different
incoming paths and the large number of additional copy-
related variables caused by Φ-functions complicates coalesc-
ing. Recent work [GH07] suggests that the problem can be
solved efficiently in practice, and near-optimal polynomial
time algorithms are likely to be found in the near future.

One of the first heuristic algorithms directly solving a sim-
ple variant of the spilling problem has been proposed by Be-
lady [Bel66] in an operating system context, namely paging
of virtual memory with write back. This problem corre-
sponds to the spilling problem for basic blocks. Belady’s
algorithm is a furthest-first heuristic, i.e., the variable that
is used furthest in the future is evicted. Guo et al. [GGP04]
empirically showed that this simple heuristic can be both
efficient and effective, especially for large basic blocks. An-
other approach for the local spilling problem was introduced
by Hsu et al. [HFG89] that maps the spilling problem to
the shortest path problem in a weighted directed graph that
grows exponentially with the number of variables and regis-
ters. To limit the exponential growth, the authors propose
pruning rules to compute problem input sizes with up to 100
nodes. Important theoretical insight into local register allo-
cation and spilling has been contributed by Farach [FCL00].
Farach considers both a simplified version where stores are
disregarded (weighted caching) and a more complex variant
where both spills and re-loads are minimized. For the first
problem, Farach presents an ILP with the consecutive ones
property. Thus, there is an equivalent minimum cost net-
work flow problem that can be solved in polynomial time.
For the more complex variant, the author proves NP com-
pleteness and an efficient 2-approximation is presented.

The intra-procedural extension of Belady’s algorithm was
introduced by Hack [Hac07]. The heuristic is applied sepa-
rately to each basic block. The notion of “furthest first” is
extended to the global scope by recursively computing the
minimum over all successor blocks. In a separate step, the
partial solutions computed by applying the heuristic locally
are combined to obtain a solution for the whole function.
This approach can be implemented efficiently for SSA form.
Complexity results and heuristics for various variants of the
spilling problem are given by Bouchez et al. [BDR07].

3. MODELING
For the spilling problem we use as an input control flow

graphs (CFG) in static single assignment (SSA) form [CFR+91].
The SSA form is a program representation in which all vari-
ables have a single static assignment and Φ-functions are
placed at confluence points to merge definitions of the same
program variable. We denote the set of variables of the SSA
form by V. Each node in the CFG corresponds to a labeled
single instruction ` of the form

` : (d1, . . . , dm)← op(u1, . . . , un).

The sets D` ⊆ V and U` ⊆ V denote the subset of variables

78



l1: def a

l2: c=Φ(0, c'')

l3: def b

l6: def c'

l4: use a

l7: c''=Φ(c', c)

l5: use c

l8: use b

1

100

2080

20

320

80

400

100

99

l9: use a

1

l1: def a

l2: c=Φ(0, c'')

l3: def b

l6: def c'

l4: use a'

l7: c''=Φ(c', c)
     b''=Φ(b', b)

l5: use c

l8: use b''

1

100

2080

20

320

80

400

99

l9: use a''

1

store a

load a'

load b'

load a''

store b

(a) Input program in SSA form (b) Spilling transformation for two registers

Figure 1: Motivating example

defined and used at `, respectively. For each v ∈ V, def(v)
denotes the unique label defining v. Liveness for strict vari-
ables is defined in the usual way: a variable v is live at
label `, if there is a (possibly empty) path from ` to a label
`′ such that v ∈ U`′ and the path does not include def(v).
The set of variables live at label ` is denoted by L`. Two
variables v, v′ ∈ V are said to interfere iff there exists a la-
bel in the program where both are live. For example, the
graph in Fig. 1(a) shows a node-labeled CFG in SSA form
with variables a , b, c, c’ , and c”. For the latter variable,
Φ-functions have been inserted that disambiguate multiple
reaching definitions. Edge frequencies are denoted along the
arcs in the CFG.

In our example, variable a is live at labels l2 to l9 while
the live range of variable b spans across labels l4 to l8. Note
the special meaning of φ-functions in this respect: their ar-
guments are only used if control flow enters a label along
the corresponding in-edge, e.g., variable c is live at label l5
but not at l6. For the consideration of liveness, we can treat
phi functions as if their arguments are used at the end of
the particular predecessor block. We are assuming a RISC
architecture where all arguments to an instruction have to
reside in a register. Likewise, results are always written into
one or more destination registers. Transfers from memory
into registers and vice versa can be accomplished using ex-
plicit load and store instructions. Consequently, the number
of variables live at a particular label ` cannot exceed k−|D`|
in order to allow for a coloring with k registers.

The objective of spilling is to insert load- and store-instructions
along the edges of the CFG in order to split live ranges such
that that the overall costs are minimized. Costs may be

constant to minimize for code size, proportional to the edge
frequencies to optimize for execution time, or any combina-
tion of the two. Furthermore, we can easily add support
for re-materialization by justifying the cost-function accord-
ingly. This is most useful for constants or constant expres-
sions such as frame-pointer indirect addressing.

Assuming a total number of two registers, we show a
cost-minimal transformation with respect to the given edge-
weights for our example in Fig. 1(b). Live ranges for vari-
ables a and b have been split by storing them to a dedicated
location in memory at the point of definition and re-loading
them before they are used. In order to maintain SSA form,
we have to insert additional Φ-functions and rename refer-
ences to reflect those changes accordingly [CFR+91].

Many algorithms insert re-load instructions for spilled vari-
ables right before they are used. However, this can lead
to inefficiencies, e.g., inserting a re-load for variable a in
Fig. 1(b) within the inner loop right before label l4 increases
the costs of the transformation significantly.

Considering a single variable v, we can compute the over-
all costs for reloading its value from memory using a simple
min-cut computation. We transform the control flow graph
into a weighted network Nv as shown in Fig. 2. For each
node in the CFG at which v is live, we generate a node in
our min-cut network. Likewise, edges are introduced that re-
flect the cost of inserting a re-load instruction. The weighted
network Nv has dedicated nodes for the source s and sink t,
respectively.

For all successors of def(v), we add an additional edge
from s to the corresponding node in Nv with weight zero.
This reflects the fact that a value is always available right

79



s

l2

l3

l6

l4

l7

l5

l8

0

100

2080

20

320

80

400

100

99

l9

1

t

∞

∞

S

T

Figure 2: Modeling for a single variable

after its definition. Furthermore, each label where v is used
is connected to the artificial t-node with costs ∞. The
intention of this transformation is as follows: any s-t cut
with weight less than ∞ corresponds to a valid segmenta-
tion of the original live range such that re-load instructions
are placed on every cut-edge passing from a node in S to a
node in T . The weight of the cut reflects precisely the costs
of the transformation in the chosen cost model. The cut
that has been chosen for the example in Fig. 1 is depicted
by the bold dotted line. It consists of the edges (l3, l4) and
(l8, l9) which are the places where we inserted the re-load
instructions before.

Solving the min-cut problems isolated for each variable
does not lead to a meaningful solution as the model always
allows for the trivial solution where the S-partition is con-
stituted by nothing but the s-node. This is the equivalent
of assigning a machine register to each variable for the en-
tire live range. In order to account for register constraints,
we identify source and sink nodes for each of the generated
networks (one per variable). Thus, we obtain a combined
network flow problem for the whole function. Nodes in the
combined graph are assigned to disjoint partitions. For each
label ` in the CFG, we define a partition Q` that includes
all the nodes from networks Nv that correspond to label `.
Thus, each partition Q` includes one node per variable live
at `. Furthermore, a partition Q` has capacity k− |D`|. In-
tuitively, the capacity of a partition denotes the number of
live ranges that may pass through a particular label without
exceeding register constraints.

We can thus reduce the problem where to insert re-loads
to the problem of finding a minimum cut in the combined
network subject to the conditions |T∩Q`| ≤ k−|D`| for each
partition Q`. This model allows us to formulate spilling as
a well-defined combinatorial optimization problem and has

s

l1

l2

0

li

t

∞

c1,2

ci-1,i

rv

c

∞

∞

∞

Figure 3: Accounting for store costs

an underlying network flow structure. The model accomo-
dates the design of simple greedy heuristics as it is straight-
forward to find feasible solutions, e.g., by heuristically as-
signing |Q`| − k + |D`| nodes to the S partition.

The proposed model assumes that the value of each defi-
nition is always available in memory. It is sufficient but not
necessarily optimal to store a value right after its point of
definition. As these spill instructions usually do not come for
free, it might be desirable to account for their costs within
the optimization model. For each variable v, an additional
node rv is inserted. We introduce an additional arc (rv, t)
whose weight corresponds to the costs of storing the partic-
ular variable as depicted in Fig. 3. We have to account for
those costs only if there is at least one re-load operation. In
other words, there is a node other than s that is assigned
to the S partition. We can model this constraint by adding
additional arcs with weight ∞ from each label other than
s and t to the newly introduced node rv. Those edges im-
ply that rv ∈ S if any of the adjacent nodes other than t
is in S. For values that allow for re-materialization such as
initializations with constants or constant expressions, store
costs are usually 0 and the additional node can be safely
removed. Otherwise, the same considerations discussed for
re-loads apply: the cost function can be used to optimize for
any combination of code size and performance.

4. THE CONSTRAINED MIN-CUT (CMC)
PROBLEM

In the following, we describe the constrained min-cut prob-
lem as a combinatorial problem, as a quadratic and as a
linear mathematical program.

Let G(V,E) be a digraph with edge weights wuv ∈ Z+,
for each edge (u, v) ∈ E. Further, let s, t ∈ V denote two
distinguished vertices and let P = {{s}, {t}, Q3, . . . , Qr} de-
note a disjoint partitioning of V . Each disjoint set Qi, for
all i, (1 ≤ i ≤ r), has associated a capacity ci ∈ Z+. Find a
separation of V into two disjoint sets S and T , (s ∈ S and
t ∈ T ) whose cut set

P
(u,v)∈E,u∈S,v∈T wuv is minimal such

that |T ∩ Qi| ≤ ci for all i, (1 ≤ i ≤ r). We may state the
CMC problem as a quadratic integer program as follows,

min
P

(u,v)∈E
wuv(1− xu)xv

s.t xt − xs ≥ 1P
u∈Qi

xu ≤ ci for all i, 1 ≤ i ≤ r
xu ∈ {0, 1} for all u ∈ V

(1)

80



The variables xu are 0-1 integer variables with the interpre-
tation that xu is zero if vertex u is in S and one if it is in T .
By linearizing the above quadratic mathematical program
we obtain the following integer linear program,

min
P

(u,v)∈E
wuvyuv

s.t. xt − xs ≥ 1
xu − xv + yuv ≥ 0 for all (u, v) ∈ EP
u∈Qi

xu ≤ ci for all i, 1 ≤ i ≤ r

xu ∈ {0, 1} for all u ∈ V
yuv ∈ {0, 1} for all (u, v) ∈ E

(2)

Disregarding the capacity constraints in line 4 of Eq. 2, the
model corresponds to the s-t min-cut problem whose con-
straint matrix is totally unimodular [AMO93], i.e., the solu-
tion of the relaxed problem gives the optimal integral solu-
tion. This implies that a polynomial time solver for linear
programming may be employed to solve the problem (e.g.
interior-point). Better performing s-t min-cut algorithms
exist [SW97] or max-flow algorithms can determine the so-
lution of an instance of the s-t min-cut problem because the
s-t min cut is the dual problem of max-flow. Nevertheless,
having the capacity constraints of line 4 in Eq. 2 renders the
problem NP complete.

Note that the integer linear program in Equation 2 pro-
vides already a feasible algorithmic approach to the CMC
problem. As our experiments show, mature integer lin-
ear programming solver technology can solve large instances
within reasonable time limits. However, integer linear pro-
gramming solvers are too heavy weight in terms of runtime
and memory consumption for a compiler setting.

5. LAGRANGIAN RELAXATION
Lagrangian relaxation [AMO93] is a general solution ap-

proach for mathematical programs and is quite often appli-
cable for problems with an embedded network structure like
CMC. In the following we are applying Lagrangian relax-
ation to CMC to devise a polynomial-time algorithm with
near-optimal solutions, which does not rely on integer linear
programming.

Consider the CMC formulation presented in Equation 2
and let X denote the set of solutions that satisfy the con-
straints of the s-t min-cut problem without the additional
capacity constraints in Line 4. We may express CMC prob-
lem as z∗ = min {ax : x ∈ X,Bx ≤ c} where constraints
Bx ≤ c denotes the capacity constraints for disjoint sets Qi
with capacity vector c. By relaxing the constraints, we ob-
tain the Lagrangian relaxation L(µ) = min {ax+µ(Bx−c) :
x ∈ X}. We hereby remove the constraints of the mathemat-
ical program and transform them to a term of the objective
function with associated Lagrangian multipliers µ. Hence, a
solution of the relaxed problem will not necessarily be a fea-
sible solution of the CMC problem. LP theory states that
for any value for the Lagrangian multipliers µ, the value
L(µ) is a lower bound on the optimal objective value of the
CMC problem. The tightest possible bound is obtained by
the Lagrangian multiplier problem L∗ = maxµ≥0 L(µ) and
we have the well-known relations L(µ) ≤ L∗ ≤ z∗.

The Lagrangian multiplier problem provides an optimality
test: for any vector µ, if x is a feasible solution to the CMC
problem and L(µ) = ax, then L(µ) is an optimal solution of
the Lagrangian multiplier problem and x is an optimal solu-

tion for the CMC problem. Furthermore, if for some choice
of µ, the solution x∗ of the Lagrangian relaxation is feasible
for CMC and x∗ satisfies the complementary slackness con-
dition µ(Bx∗− c) = 0, then x∗ is an optimal solution of the
CMC problem as well.

Lagrangian relaxation is useful for the design of an al-
gorithm if we can find an efficient algorithm for the La-
grangian multiplier problem. The Lagrangian multiplier
problem L(µ) of CMC may be stated as follows:

min
P

(u,v)∈E
wuvyuv +

Pr
i=1 µi

P
u∈Qi

(xu − ci)

s.t. xu − xv + yuv ≥ 0 for all (u, v) ∈ E
xu ∈ {0, 1} for all u ∈ V
yuv ∈ {0, 1} for all (u, v) ∈ E

(3)

The polyhedron defined by the set of inequalities above
already corresponds to a s-t min-cut problem. The main
difference is the objective function: the Lagrangian termPr
i=1 µi

P
u∈Qi

(xu − ci) of the objective function has for
each disjoint set Qi an associated Lagrangian multiplier µi,
that is multiplied by the number of nodes that are placed in
the T -partition.

For a constant µi, term µici in the Lagrangian term eval-
uates to a constant and we reduce the Lagrangian term toPr
i=1 µi

P
u∈Qi

xu =
P
u∈V µχ(u)xu where χ(u) is index i

such that u ∈ Qi. Note that index i is unique because
the node set V is disjointly partitioned. For a constant
µ vector, solving the Lagrangian function becomes a spe-
cial case of Stone’s problem [Sto77], which allocates a set
of processes P = {p1, . . . , pr} on to processors α and β.
Execution times of a process may differ depending on the
processor where it is executed and there are communication
costs if two communicating processes are mapped to differ-
ent processors. More formally, let wα(p) and wβ(p) denote
the executions time of process p on processors α and β, re-
spectively, and let wαβ(p1, p2) denote the communication
costs between processes p1 and process p2 when placed on
α and β, respectively. The objective of Stone’s problem is
to find a partitioning of set P into two disjoint sets α and β
such that the following objective function becomes minimal:

min
X
p∈α

wα(p) +
X
p∈β

wβ(p) +
X

p1∈α,p2∈β

wαβ(p1, p2) (4)

Stone reduces the problem to the s-t min-cut problem. Pro-
cesses are represented by nodes in the network and in the
network there are a dedicated source node s and a dedicated
sink node t. Execution costs of processor p on α and β are
represented as an edge between source s and p with capac-
ity wβ(p) and an edge between p and t with capacity wα(p),
respectively. Communication costs between p1 and p2 are
modeled as an edge with capacity wαβ(p1, p2).

We use Stone’s reduction for computing the Lagrangian
function L(µ) of CMC for a given constant µ. The s-t min-
cut network is augmented with edges of the form (s, u) with
capacity µi for u ∈ V as depicted in Fig. 4. Edge (s, u)
becomes a cut-edge iff u ∈ T .

Employing Stone’s reduction gives us an an efficient algo-
rithmic vehicle to solve the Lagrangian function for a con-
stant µ. However, it remains to be shown how to solve the
Lagrangian multiplier problem L∗ = maxµ≥0 L(µ). We use
a variant of sub-gradient optimization that is an adaption
of Newton’s method for solving systems of non-linear equa-
tions. The principle idea is to gradually adapt the vector

81



s

l1

l2

0

li

t

∞

ci-1,i

μ1 μ2 μ3 S

T

Figure 4: Reduction of the relaxed problem L(µ) to
a s-t min-cut instance.

of Lagrangian multipliers µk+1 = [µk + θk(Bxk − c)]+ for
an initial choice µ0. The scalar θk denotes the step length
in the k-th iteration and xk is a solution vector of the sub-
problem L(µk). As we are relaxing inequalities, we never
consider negative elements in our vector µ. Thus, µk is set
to zero if the update strategy would cause it to become neg-
ative (denoted by [ ]+). The choice of the step length deter-
mines the convergence speed and we use a popular standard
heuristic that adapts the step length after every iteration by

θk = λk(U−L(µk))

||Bxk−c||2 where U denotes the best upper bound

to the problem found so far, λk is a scalar that is gradually
decreased, ||Bxk − c||2 denotes the Euclidean norm of the
inner term.

The process allows for an intuitive representation: if for
any partition Qi, the term (Bxk − c)i is zero or negative,
the capacity constraints imposed on Qi are satisfied. How-
ever, if the term is greater than zero, µi serves as a penalty
that directs the min-cut algorithm to put some of the nodes
from the T to the S-partition. The step length directs the
algorithm to move quickly towards the optimum at the be-
ginning of the approximation, while we proceed with more
care once we are close to the optimal value L∗. A theoret-
ical discussion of convergence criteria and the rational for
choosing the step length is beyond the scope of this work.
As it is a standard technique in combinatorial optimization,
the interested reader is referred to relevant literature, e.g.,
Ahuja et al. [AMO93].

In general, a solution to the Lagrangian multiplier prob-
lem is not necessarily feasible for the CMC problem. A
popular approach is to use the values obtained from the re-
laxation in order to solve the remaining problem using enu-
meration techniques such as branch-&-bound. The efficiency
of those techniques largely depends on the size of the dual-
ity gap. An interesting result in combinatorial optimization
states that the bound obtained from Lagrangian relaxation
is always as tight as the bound obtained from an LP relax-
ation. An even stronger statement for problems satisfying
the integrality property (such as s-t min-cut) guarantees that
both bounds are equal. Thus, solving the Lagrangian multi-
plier problem is equivalent to solving the LP relaxation but
does not rely on linear programming and can often be solved
more efficiently.

An alternative technique that can be used to obtain near-

optimal solutions is the use of so-called Lagrange heuristics.
The main idea is that solutions to the Lagrangian multi-
plier problem are usually very close to the solution of the
CMC problem while only a small number of relaxed con-
straints remain violated. A Lagrange heuristic is an algo-
rithm that resolves violated constraints in a greedy manner,
often achieving close to optimal results. An additional ad-
vantage is that the computed bound provides us with an
performance guarantee in respect to the optimal solution.

6. EXPERIMENTAL EVALUATION
We have implemented and evaluated the proposed tech-

niques using LLVM 2.4 – a compiler infrastructure built
around an equally named fully typed low level virtual ma-
chine [LA04]. All programs have been cross compiled using
one core of a Xeon DP 5160 3GHz. The ILP formulation for
CMC is solved using ILOG CPLEX(tm) 10.

First, we are interested in the potential for exact spilling
compared to heuristics. As a reference, we use the default
allocator of LLVM 2.4 – an improved implementation of lin-
ear scan register allocation with backtracking in the case of
spilling. We compare results for a varying number of avail-
able registers with a modified backend where we perform
spilling right before the standard register allocator. Regis-
ter allocation in LLVM is traditionally performed after SSA
elimination. Thus, even though we spill a sufficiently large
number of registers, the register allocator might insert ad-
ditional spill code that is not strictly necessary. We present
benchmarks for two representative embedded architectures:
a 4-way VLIW core for audio-/video-decoding and an ARM
processor as an example for an embedded RISC architecture.

The first experiment is based on an OnDemand(TM) CHILI
core – a regular 4-way VLIW load/store architecture with
64 general purpose registers and some specialized instruc-
tion set extensions for multimedia applications. Execution
times have been gathered using a cycle-accurate simulator.
We use typical benchmarks reflecting the characteristics of
embedded media applications provided by OnDemand(TM),
most of them are taken from the freely available MiBench
suite. Both the simulator and the compiler have been mod-
ified to support a varying number of registers, allowing us
to make experiments for several different settings.

We present data for various configurations with 8, 12,
16, and 32 registers in Fig. 5. For small register files, the
achieved speedup on top of LLVM is substantial for all bench-
marks, ranging from about 8% to almost 30%. Not sur-
prisingly, the potential for improved spilling techniques de-
creases with increasing number of machine registers. On
average, there is an improvement of about 15.5% for the
scarcest setting, gradually decreasing to 6.5%, 3%, and 0.9%
for 12, 16, and 32 registers respectively. None of the bench-
marks showed additional speedup for 64 registers.

Solver times for those benchmarks are definitely within
practical limits. Our ILP-based algorithm finished within a
few seconds for most of the benchmarks, the most difficult
being automotive-susan and video-h263 with 24 and 23 sec-
onds respectively. This includes the time spent on the CMC
reduction as well as SSA reconstruction after insertion of
spill code.

In order to test our approach on larger benchmarks, we
consider the widely-used SPECINT 2000 suite. Running
those benchmarks on a bare-metal VLIW is infeasible as
they require an underlying operating system and a complete

82



!"#$%&'() *%+,"'-.&/(-0 ,-*".$12&,3! 1-4-*%''&!#(*' 5$#-%&367) 5$#-%&'(-06 !5-.!0-

&89::

:9::

89::

;:9::

;89::

6:9::

689::

):9::

)89::

!!"#!

!$"%$

%"!$

&#"%'

!$"('

!("))

!'"')

#"'*

$"!$

&")%

!("!*

$"*!

*"'$

$"')

#"%)

*"%$

("(( ("(&

&")$

("$#

&"#$

("'&
("!+

!"!#

)"*(

("%%

<

;6

;7

)6

='
(
.%
5-
'
-+
1>
?@
A

Figure 5: Improvement for a varying number of registers for spill code placement compared to the linear
scan allocator of LLVM for a 4-way VLIW processor.

libc implementation. Therefore, we use an ARMv7 board
(OMAP3 EVM) at 500 MHz with 128MB of main memory
running a Linux 2.6.22 kernel. Profiles are obtained using
the input set “train”while the reported execution times were
gathered using the “test” inputs. Floating point operations
are emulated using a IEEE754 softfloat library. We mea-
sured execution times using the unix time utility consider-
ing the best out of 10 runs on an unloaded machine for each
configuration.

ARM processors support two different instruction sets:
ARM and ARM Thumb. While in ARM mode, the processor
fetches 32-bit instructions and has access to the full register
file with 16 registers. Thumb mode is a more compressed
16-bit instruction set architecture that allows for smaller
code size at a significant performance penalty. In Thumb
mode, most instructions can only access the lower half of
the register file and only a subset of the addressing modes is
available. Hence, the register pressure is much higher than
in ARM mode. Note, that some of the architectural registers
are special-purpose and cannot be used for generic program
variables, e.g., program counter or stack pointer.

Table 1 shows the results for both ARM and ARM Thumb
execution. We use (1) a generalization of Belady’s algorithm
as proposed in [HGG06] (BLY) as a baseline, (2) LLVM 2.4
standard spilling heuristic, and (3) our spill code placement
based on CMC using CPLEX to compute an optimal so-
lution. Note that in ARM Thumb mode two benchmarks
fail due to bugs in the LLVM backend that we could not
yet solve (i.e., 176.gcc and 300.twolf). On average, LLVM
is about on par with a gcc cross-compiler at its highest op-
timization level. The spilling heuristic of LLVM shows an
improvement of 4.91 and 4.33 percent for ARM and ARM
Thumb mode respectively compared to the generalized Be-
lady heuristic. The algorithm has been implemented as de-
scribed in [HGG06], i.e., we compute partial solutions for
basic blocks that are heuristically combined to obtain a so-
lution for the whole function. The main reason for the per-
formance regressions compared to the other algorithms is
that there is no explicit considerations of loop structures
and block weight, which often leads to avoidable spill code
within inner loops. The speedup obtained with our CMC

reduction compared to BLY is about 10.44% on average for
ARM Thumb mode and 7.79% for ARM.

Lagrange Relaxation.
To overcome the limitations of ILP solvers, we have shown

in Section 5 how the relaxation of capacity constraints leads
to a problem that can be solved using efficient generic net-
work flow algorithms. We evaluate the general solution ap-
proach for three different greedy Lagrange heuristics with in-
creasing algorithmic complexity. For any partial solution, we
visit each partition Qi in order, while evicting [|T ∩Qi|−ci]+
many nodes from the T partition according to one of the fol-
lowing strategies:

• SIMPLE Nodes are simply ordered according to their
effect on the objective function, preferring those caus-
ing a low penalty.

• REGION This is basically the same strategy as be-
fore with the addition that we also remove nodes in
the neighborhood as long as this does not increase the
overall penalty. As we might well decrease the overall
effect on the objective function, this approach can be
seen as a simple hill-climbing heuristic.

• MIN-CUT This algorithms computes for each node
within a partition the optimal set of nodes to be moved
from the T to the S partition such that the overall
weight of the cut is minimized.

Fig. 6 shows the average ratio of the optimal solution and
the solution obtained from each of the greedy heuristics. The
x-axis denotes the number of iterations for the sub-gradient
approximation algorithm. The average quality for the pure
heuristic without the Lagrangian relaxation corresponds to
x = 0. The two simple strategies perform initially very poor
with an average of only 25% and 41% respectively. The
graph clearly shows how approximations to the Lagrangian
multiplier problem effectively guide the heuristics towards
the optimum. After thirty iterations, the average quality
for the simple strategies is improved to 63% and 75%. The
MIN-CUT heuristic shows initially an average quality of al-
most 91% and climbs up to more than 95%. However, com-

83



ARM ARM Thumb
Benchmark Source CPLEX BLY LLVM CMC BLY LLVM CMC

[LOC] [sec] [sec] [%] [%] [sec] [%] [%]
164.gzip 5615 12.72 12.11 13.07 15.44 14.00 12.00 17.25
175.vpr 11301 103.44 12.85 6.64 6.73 16.50 1.54 0.61
176.gcc 132922 483.39 7.89 8.83 13.20 n/a n/a n/a
181.mcf 1494 1.16 1.30 1.56 1.56 1.41 1.44 4.44
186.crafty 12939 75.37 30.31 13.86 12.18 40.30 16.40 12.32
197.parser 7763 19.88 12.18 0.91 3.92 14.14 -5.80 2.54
253.perlbmk 72206 285.81 1.70 0.00 8.97 1.78 1.00 4.71
254.gap 35759 47.15 3.67 -0.81 3.67 4.21 -1.64 34.94
255.vortex 49232 1026.44 33.76 -0.79 -1.86 42.39 6.99 10.30
256.bzip2 3236 18.32 27.83 0.69 6.02 40.35 9.98 10.55
300.twolf 17822 124.74 1.34 11.67 17.54 n/a n/a n/a
Mean 13.18 4.91 7.79 19.45 4.33 10.44

Table 1: Experimental results using the SPECINT 2000 benchmark suite showing the execution times for
both ARM and ARM Thumb mode. We compare three different algorithms: a generalized furthest first
heuristic (BLY), the linear scan register allocator from LLVM 2.4 (LLVM), and our improved spill code
placement algorithm (CMC). All results are relative to BLY. We use the geometric mean for speedups; for
the absolute figures we use the arithmetic mean.

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  5  10  15  20  25  30

P
er

ce
nt

ag
e

Iterations

SIMPLE
REGION
MIN-CUT

Figure 6: Average quality of three different La-
grange heuristics compared to the precomputed op-
timal solution over the whole SPECINT 2000 bench-
mark set. The x-axis denotes the number of itera-
tions for the sub-gradient optimization algorithm.

puting the metric for this heuristic is only feasible for a small
number of violated partitions. Initially, solution times might
even exceed the time required for the provably optimal ILP
approach.

Detailed performance results for the various algorithms
are given in Figure 7. Each figure shows the runtime for
all non-trivial benchmarks from the SPECINT 2000 suite.
The y-axis shows the runtime of the algorithm in seconds.
Each of the plots (a) to (e) features a polynomial asymptotic
function that has been computed using a least squares ap-
proximation. Note that y-axis are drawn with logarithmic
scale and that (a) and (b) show a smaller value range.

The performance of integer linear programming based al-
gorithms strongly depends on the particular solver. It is
very interesting that most of the problems are integral, even
if integrality constraints are dropped. Among the whole

benchmark suite, only 18 problems have a non-integral solu-
tion and require branch & bound. Thus, in practice almost
all the time is spent in the simplex algorithm solving the LP
relaxation. We compare two different ILP solvers: ILOG
CPLEX and the open source GNU linear programming kit
(glpk)1. Performance results for both solvers are shown in
Figure 7 (a) and (e) respectively. While both algorithms
indicate an asymptotic quadratic runtime in practice, the
constant differs by more than an order of magnitude. In
fact, there were 15 instances that could not be solved by
glpk within a time limit of half an hour while all bench-
marks where solved by CPLEX.

The performance of the algorithms based on Lagrangian
relaxation largely depends on the particular Lagrangian heuris-
tic. At most 20 iterations have been used for the Newton
approximation. The strategy SIMPLE is very fast and shows
an asymptotic linear runtime in practice (|V |1.02). Note
that the worst-case performance is determined by the max-
flow algorithm, which is in the order of O(|V ||E| log |V |).
The more sophisticated Lagrangian heuristics REGION and
MINCUT show quadratic behavior, but with a much larger
constant.

A comparison among all algorithms is given in Figure 7 (f).
Note that the CPLEX based algorithm is among the fastest
techniques while the GLPK solver performs worst compared
to the rest of the field. The MINCUT heuristic delivers solu-
tions that are very close to the optimum, but for significant
computational costs.

Apart from Lagrangian heuristics, the proposed relaxation
is very tempting for two more reasons. First, it provides us
with bounds that can be used to give a provable certificate on
the quality of solutions. Second, those bounds are valuable
for enumeration schemes such as branch-&-bound in order to
prune the search space more effectively. One last advantage
we want to point out is that Lagrangian heuristics lead to
progressive algorithms that deliver quickly feasible solutions
which are gradually improved as the algorithm proceeds.
Thus, we can effectively trade compile time for code quality.

1http://www.gnu.org/software/glpk

84



 1

 10

 100

 0  100000  200000  300000  400000  500000  600000  700000

#nodes

ILP (CPLEX)

y=k n^2
ILP (CPLEX)

(a)

 1

 10

 100

 0  100000  200000  300000  400000  500000  600000  700000

#nodes

Lagrane Approximation (SIMPLE)

y=k n^1
Lagrange (SIMPLE)

(b)

 1

 10

 100

 1000

 10000

 100000

 0  100000  200000  300000  400000  500000  600000  700000

#nodes

Lagrane Approximation (REGION)

y=k n^2
Lagrange (REGION)

(c)

 1

 10

 100

 1000

 10000

 100000

 0  100000  200000  300000  400000  500000  600000  700000

#nodes

Lagrane Approximation (MINCUT)

y=k n^2
Lagrange (MINCUT)

(d)

 1

 10

 100

 1000

 10000

 100000

 0  100000  200000  300000  400000  500000  600000  700000

#nodes

ILP (GLPK)

y=k n^2
ILP (GLPK)

(e)

 1

 10

 100

 1000

 10000

 100000

 0  100000  200000  300000  400000  500000  600000  700000

#nodes

Runtime Comparison

ILP (GLPK)
Lagrange (MINCUT)
Lagrange (REGION)

ILP (CPLEX)
Lagrange (SIMPLE)

(f)

Figure 7: Runtime comparison for the various CMC algorithms.

85



7. CONCLUSIONS
Our results show that traditional heuristics perform suffi-

ciently well when the number of machine registers is large,
but leave significant potential for improvement on architec-
tures with few registers. The separation of spilling from allo-
cation and coalescing is favorable in several respects. First,
it allows a separation of concerns, thereby simplifying the
design and implementation of allocation/spilling frameworks
for compilers. Second, it allows us to take advantage of ef-
ficient algorithms for allocation and coalescing that benefit
from the chordality of interference graphs for programs in
SSA form. Empirical results show that optimal spill code
placement lead to performance improvements of more than
15% on average for machines with few registers.

The main contribution of our work is the reduction of
spill code placement to a well-defined combinatorial prob-
lem called the constrained min-cut problem. The proposed
model is interesting as it is based on a generic network flow
substructure. We present an ILP formulation that can com-
pute optimal solutions for standard problem sizes. In ad-
dition, we devise a Lagrangian relaxation algorithm for the
constraint minimum cut problem that computes a solution
progressively. The progressive nature of this algorithm al-
lows solve-time to be traded for better code quality.

8. REFERENCES
[AG01] Andrew W Appel and Lal George. Optimal

spilling for cisc machines with few registers. In
PLDI, pages 243 – 253. ACM Press, 2001.

[AMO93] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin.
Network Flows: Theory, Algorithms, and
Applications. Prentice Hall, 1993.

[BCT94] Preston Briggs, Keith D. Cooper, and Linda
Torczon. Improvements to graph coloring
register allocation. ACM Trans. Program. Lang.
Syst., 16(3):428 – 455, 1994.

[BDMS05] Philip Brisk, Foad Dabiri, Jamie Macbeth, and
Majid Sarrafzadeh. Polynomial-time graph
coloring register allocation. In International
Workshop on Logic and Synthesis. ACM Press,
2005.

[BDR07] Florent Bouchez, Alain Darte, and Fabrice
Rastello. On the complexity of spill everywhere
under SSA form. In Santosh Pande and Zhiyuan
Li, editors, LCTES, pages 103–112. ACM, 2007.

[Bel66] Laszlo A. Belady. A study of replacement
algorithms for virtual storage computers. IBM
Syst. J., 5:78–101, 1966.

[CAC+81] Gregory J Chaitin, Mark A Auslander, Ashok K
Chandra, John Cocke, Martin E Hopkins, and
Peter W Markstein. Register allocation via
coloring. Computer Languages, 6:47 – 57, 1981.

[CFR+91] Ron Cytron, Jeanne Ferrante, Barry K. Rosen,
Mark N. Wegman, and F. Kenneth Zadeck.
Efficiently computing ssa form and the control
dependence graph. TOPLAS, 13(4):451–490,
October 1991.

[CH90] Fred C. Chow and John L. Hennessy. The
priority-based coloring approach to register
allocation. ACM Trans. Program. Lang. Syst.,
12(4):501–536, 1990.

[FCL00] Farach-Colton and Liberatore. On local register
allocation. ALGORITHMS: Journal of
Algorithms, 37, 2000.

[GA96] Lal George and Andrew W Appel. Iterated
register coalescing. ACM Trans. Program. Lang.
Syst., 18(3):300 – 324, 1996.

[GGP04] Jia Guo, Maria Jesus Garzaran, and David A.
Padua. The power of belady’s algorithm in
register allocation for long basic blocks. In
LCPC, volume 2958 of LNCS, pages 374–390.
Springer, 2004.

[GH07] Daniel Grund and Sebastian Hack. A fast
cutting-plane algorithm for optimal coalescing.
In Compiler Construction, volume 4420 of
LNCS, pages 111–125. Springer, 2007.

[GW96] Goodwin and Wilken. Optimal and
near-optimal global register allocation using 0-1
integer programming. Software–Practice and
Experience, 26, 1996.

[Hac07] Sebastian Hack. Register Allocation for
Programs in SSA Form. PhD thesis, Universität
Karlsruhe, October 2007.

[HFG89] W. Hsu, C. Fischer, and J. Goodman. On the
minimization of loads/stores in local register
allocation. IEEE Trans. on Softw. Eng.,
15(10):1252, October 1989.

[HG06] Sebastian Hack and Gerhard Goos. Optimal
register allocation for ssa-form programs in
polynomial time. Information Processing
Letters, 98(4):150–155, May 2006.

[HGG06] Sebastian Hack, Daniel Grund, and Gerhard
Goos. Register Allocation for Programs in
SSA-Form. In Compiler Construction, volume
3923, pages 247–262. Springer, March 2006.

[KG06] David Ryan Koes and Seth Copen Goldstein. A
global progressive register allocator. ACM
SIGPLAN Notices, 41(6):204–215, June 2006.

[LA04] Chris Lattner and Vikram S. Adve. LLVM: A
compilation framework for lifelong program
analysis & transformation. In CGO, pages
75–88. IEEE Computer Society, 2004.

[PM98] Jinpyo Park and Soo-Mook Moon. Optimistic
register coalescing. In PACT, pages 196–204.
IEEE Computer Society, October 1998.

[PP05] Fernando Magno Quintão Pereira and Jens
Palsberg. Register allocation via coloring of
chordal graphs. In APLAS, volume 3780 of
LNCS, pages 315–329. Springer, 2005.

[PS99] Massimiliano Poletto and Vivek Sarkar. Linear
scan register allocation. ACM Trans. Program.
Lang. Syst., 21(5):895 – 913, 1999.

[Sto77] H. S. Stone. Multiprocessor scheduling with the
aid of network flow algorithms. IEEE TSE,
SE-3(1):85–93, January 1977.

[SW97] Mechthild Stoer and Frank Wagner. A simple
min-cut algorithm. J. ACM, 44(4):585–591,
1997.

86


