
Paper and BibTeX entry are available at http://www.complang.tuwien.ac.at/papers/. This paper was published in:
John Morris (ed.), Computer Architecture (ACAC ’98), Perth, pages 101--110
Australian Computer Science Communications 20(4), Springer

JavaVM Implementation:Compilers versus HardwareAndreas Krall1 and Anton Ertl1 and Michael Gschwind21 Institut f�ur Computersprachen, Technische Universit�at WienArgentinierstra�e 8, A-1040 Wienfandi,antong@complang.tuwien.ac.at2 Institut f�ur Technische Informatik, Technische Universit�at WienTreitlstra�e 1, A-1040 Wienmike@vlsivie.tuwien.ac.atAbstract. The Java Virtual Machine (JavaVM) has contributed greatlyto Java's success because it provides a common intermediate formatwhich can be shared across the Internet. Unfortunately, the JavaVMhas been optimized for an interpreted model, resulting in inferior perfor-mance because its stack-based execution model cannot exploit instruction-level parallelism. The inherent serialization of the stack execution modelcan be addressed either by using compilation techniques or by hardware.In this article, we review the di�erent JavaVM implementation meth-ods based on our experiences with the implementation of the CACAOjust-in-time compiler. For comparison, we have also investigated di�erenthardware architectures for the direct implementation of the JavaVM.1 IntroductionJava's [Arnold and Gosling, 1996] success as a programming language resultsfrom its role as an Internet programming language. The basis for this success isthe machine independent distribution format of programs with the Java VirtualMachine (JavaVM) [Lindholm and Yellin, 1996]. The standard interpretive im-plementation of the JavaVM makes execution of programs slow. This does notmatter if small applications are executed in a browser, but becomes intolerableif big applications are executed. There are two solutions to solve this problem:{ specialized JavaVM processors{ compilation of byte code to the native code of a standard processorSun took both paths and is developing both JavaVM processors and nativecode compilers. Our JIT compiler (CACAO) is described in detail in [Kralland Gra
, 1997] and is freely available via the world wide web. In this work,we compare compilation techniques such as just-in-time (JIT) compilation andspecialized JavaVM hardware.1.1 Previous WorkMany attempts at language-speci�c architectures have been made, for a widevariety of languages including LISP [Steele and Gabriel, 1996], Prolog [Holmeret al., 1996], Smalltalk [Ungar, 1987], Forth [Hayes and Lee, 1989], Algol (Bor-roughs), Modula-2 [Ohran, 1984], Java [Lindholm and Yellin, 1996], and many



others. Depending on the requirements of the supported language, the proposedarchitecture has ranged from stack-based architectures to extensions for con-ventional RISC architectures (such as the SPUR, BAM, SOAR and SPARCarchitectures).Stack architectures have a long history in the implementation of computerarchitectures and in the design of intermediate representation for compilers andinterpreters. Originally, stack architectures were seen as an ideal representationfor compilation, as code generation was easy and more advance compilationtechniques had not yet been developed. Consequently, the appeal of stack archi-tectures was great, a�ording to use the same simple representation for internalrepresentation and as input to interpreters of computer architectures.Well-known implementations of stack architectures were manufactured bycompanies such as Burroughs (now Unisys), Hewlett-Packard, or Tandem. Alas,these architectures were eventually outperformed by RISC architectures andtoday only a few implementations are still available. Many others have beenmigrated to RISC architectures, sometimes supported by emulation and binarytranslation techniques.More recent stack-based architectures include a number of Forth processors[Koopman, 1989; Hayes and Lee, 1989]) and the JavaVM. While the Forth ar-chitectures have never gained any widespread acceptance, the jury is still out onthe JavaVM.The �rst JavaVM implementations available were interpreter-based, but theirperformance was disappointing. In order to provide acceptable performance forJavaVM-based applications, a number of solutions have been proposed and im-plemented:just-in-time compilation Several JIT compilers have become available overthe past year, such as the publicly available ka�e [Wilkinson, 1997] andCACAO [Krall and Gra
, 1997] systems, as well as products from Sun (forthe SPARC and PowerPC architectures), SGI (MIPS RISC) and Microsoft,Netscape, Symantec (for the Intel x86).batch compilation Batch translation can be performed in advance to gener-ate directly executable native machine code from the Java class �les. Thisapproach has the advantage that sophisticated code generation and opti-mization techniques can be used. Examples for such systems are the Ca�einesystem [Hsieh et al., 1996] which directly generates object code and the Tobasystem [Proebsting et al., 1997] which uses C as intermediate representation.hardware implementation Sun has announced a hardware implementationof the JavaVM, called picoJava-I [O'Connor and Tremblay, 1997].Both JIT and native compilation techniques can be improved by appropriatehardware primitives designed to support e�cient JavaVM execution. An examplefor this approach is the DAISY (Dynamically Architected Instruction Set fromYorktown), a VLIW architecture developed at IBM for fast execution of x86,PowerPC, S/390 and JavaVM code [Altman and Ebcio�glu, 1997]. Compatibilitywith di�erent old architectures is achieved by using a JIT compilation technique.The JIT compilation scheme for the JavaVM is described in [Ebcio�glu et al.,1997].1.2 The Java Virtual MachineThe JavaVM is a typed stack architecture [Lindholm and Yellin, 1996]. A JavaVMimplementation has to check the program for type correctness and executes only



correct programs. The JavaVM speci�cation also de�nes the format of Java class�les, which include code, data (constant pool) and type information for each Javaclass.There are di�erent instructions for integer, long integer, 
oating point andaddress types. Byte and character types have only special memory access in-structions and are treated as integers for arithmetic operations. The main in-struction set consists of arithmetic/logical and load/store/constant instructions.There are special instructions for array and �eld access (memory access), methodinvocation, function call, type checking, and complex table branches. The com-plex instructions provide an abstraction layer by hiding implementation details,thereby o�ering di�erent implementation choices to JavaVM implementors.2 CompilerThe architecture of a RISC processor is completely di�erent from the stackarchitecture of the JavaVM. RISC processors have large sets of registers andexecute arithmetic and logic operations only on values which are held in registers.Load and store instructions are provided to move data between memory andregisters. Local variables of methods usually reside in registers and are saved inmemory only during a method call or if there are too few registers.2.1 Machine code translation examplesIf JavaVM code is translated to machine code, the stack is eliminated and reg-isters replace the stack slots [Ertl, 1992]. A naive translation scheme just wouldrepresent each stack location by a register and would generate a lot of copyinginstructions which just move values between local variable registers and stackregisters. A more optimized translation scheme as implemented in the CACAOsystem does not generate these copying instructions and generates code whichis equivalent to code generated by a C compiler.The example expression a = b * c + d has the JavaVM code given on theleft and will be translated to the two Alpha instructions on the right (the vari-ables a, b, c and d reside in registers):iload b load contents of variable b MULL b,c,tmp0 tmp0 = b * ciload c load contents of variable c ADDL tmp0,d,a a = tmp0 + dimul compute b * ciload d load contents of variable diadd compute (b * c) + distore a store stack top in variable a2.2 Method invocationA method invocation as described by the JavaVM is a complex instruction. Manyimplementation issues are left over for the implementor. On a RISC processor agood choice is to store in a stack frame only spilled registers (including the returnaddress register) and nothing else. The parameters are passed via argument reg-isters. Fast register allocation is done by preassigning argument registers beforeregister allocation of local variables and stack registers.



The example methodpublic int add (int a, int b) {return a + b;}has the JavaVM code given on the left and will be translated to the two Alphainstructions on the right (the parameters a and b reside in parameter registers):iload a load contents of variable a ADDL a,b,v0 resultreg = a + biload b load contents of variable b RETiadd compute a + bireturn return method result to callerInvoking a method with the command o.add(x * y, z - 3) has the Java-VM code given on the left side and will be translated to the Alpha instructionson the right (registers a0, a1 and a2 are argument registers):aload o load reference to o MOV o,a0 argreg0 = oiload x load contents of variable x MULL x,y,a1 argreg1 = x * yiload y load contents of variable y SUBL z,3,a2 argreg2 = z - 3imul compute x * y LDQ mp,0(a0) load class pointeriload z load contents of variable z LDQ mp,add(mp) load address of addiconst_3 push constant 3 JSR (mp) call o.addisub compute z - 3invokevirtual add call o.add2.3 JIT compilerA JIT compiler like the CACAO system [Krall and Gra
, 1997] translatesJavaVM code into native code on demand. Each method is translated whenit is invoked for the �rst time. Because the JIT compiler operates at run time,only medium complexity optimizations can be performed. In e�ect, only opti-mizations where the increased compilation time is o�set by reduced run time areworthwhile. For example, optimizations like graph coloring register allocators orglobal instruction scheduling cannot be used because of their high cost. There-fore, fast and simple register allocation techniques and basic block schedulingtechniques are applied.The advantage of a JIT compiler is that information about the completeprogram (like the class hierarchy) is available. It has information about �nalclasses (without being declared �nal) and can perform inlining on more methodsthan a Java to JavaVM compiler.2.4 Batch CompilerBatch compilers directly generate native code which can be executed by the pro-cessor. Because the batch compiler is not executed at run time, but at compiletime, the compiler can use more sophisticated optimization strategies than a JITcompiler, in particular optimizations like loop-invariant code motion, strengthreduction, and global register allocation, possibly even interprocedural optimiza-tions like type analysis for determining monomorphic method invocations [Diwanet al., 1996], inlining, and interprocedural register allocation. Interprocedural op-timizations are important given the high frequency of calls and returns in Javaprograms (together 7% of the dynamically executed JavaVM instructions).



3 Java hardwareHardware support for the JavaVM can be achieved with di�erent approaches.A brute force approach consists of using the JavaVM as the instruction setarchitecture of a microprocessor and implement all JavaVM functionality inhardware. An alternative, hybrid approach can be to supply additional featuresin a RISC or VLIW instruction set to support e�cient JavaVM execution usingjust-in-time compilation or interpretation.3.1 An existing JavaVM processor: the picoJava-ICurrently, the only existing hardware implementation of the JavaVM is Sun'spicoJava-I architecture [O'Connor and Tremblay, 1997]. The picoJava-I archi-tecture uses a mixture of hardwired implementation, state machines, microcodeand software to implement the functionality of the JavaVM. This approach isnecessary because the JavaVM is optimized as intermediate language for in-terpretation, using a number of high-level instructions to reduce interpretationoverhead.As a result, JavaVM implementation su�ers from many of the same prob-lems that CISC instruction sets su�er, such as variable length instructions andinstructions which cannot be implemented in hardware without inordinate re-source usage.The picoJava-I architecture uses in-order execution based on a 4 stage pipelinewith fetch, decode, combined execution/memory and write back phases. Pipelin-ing of execution and memory access would not result in any further gains becauseany operation following a memory access would most likely require the resultloaded by the memory phase due to the stack execution model. To optimize theimplementation of the stack architecture, the picoJava-I implements a register�le which is used as a stack cache for the top 64 stack elements.The instruction decode unit is relatively straight forward, decoding one vari-able-length instruction per clock cycle. To improve processor utilization andperformance, the instruction decoder implements a folding mechanism to mapmultiple JavaVM instructions to a single hardware operation: in the JavaVM,instructions frequently copy values from local variables to the top of the stackimmediately before the instruction which consumes that value. These instruc-tions are merged into a single hardware operation which receives the value di-rectly from the local variable, reducing the number of copy operations requiredfor JavaVM execution. This simple folding mechanism reduces the instructioncount by 15%.Since references are resolved at run time in the JavaVM speci�cation, theJavaVM instruction set includes a number of instructions referencing objectssymbolically. In the picoJava-I architecture, these instructions cause a trap tothe operating system which is responsible for resolving references. The referenceinstructions are then replaced by quick variations directly executable in JavaVMhardware. This reduces the time to execute the instruction the next time it isencountered.In addition to the instructions de�ned in the JavaVM speci�cation, thepicoJava-I architecture implements a number of instructions for systems pro-gramming (e.g., I/O, cache management, garbage collection).



3.2 High-performance hardware implementation issuesThe design of the JavaVM as an interpreted intermediate language poses a num-ber of challenges for the implementation of an aggressive high-performance archi-tecture. Two problem areas can be identi�ed in the speci�cation of the JavaVM.{ Use of the JavaVM speci�cation results in a number of instructions withhigh complexity.{ The stack architecture limits parallelism.{ Variable-length instructions complicate parallel instruction decoding for su-perscalar instruction issue.High complexity instructions (such as method invocation and the lookup-switch) are di�cult to accommodate in pipelined architectures. Possible solu-tions to this problem are the use of an instruction decode unit which translatescomplex JavaVM instructions into a series of pipelined micro-operations (as usedin implementations of the Intel x86 architectures) or trapping to a software im-plementation. These approaches are complementary, and both can be used in asingle design to implement instructions of di�erent complexity, as used in thepicoJava-I architecture. While a solution based on software traps results in adegradation of performance, hardware based interpretation (based on the gen-eration of micro-ops in the instruction decode unit) increases design complexity.The decision to use a stack architecture for the JavaVM incurs two prob-lems when trying to design high performance architectures, namely the implicitdependency of instructions on preceding instructions and the presence of moveoperations of local variables and program constants to the stack before they canbe referenced.The dependencies introduced by the stack model can be resolved by a twostep scheme: �rst, all stack references must be translated to register referencesand anti-dependencies have to be removed by register renaming. Unfortunately,this still leaves the code with long chains of 
ow dependencies from the orig-inal instruction order. Thus, an out-of-order execution mechanism has to beemployed to generate an optimal schedule. Without out-of-order execution, itis not possible to exploit the performance potential of super-scalar and deeplypipelined architectures.A �nal problem with the JavaVM architecture is the abundance of moveinstructions necessary to execute a program which is inherent in stack architec-tures. O'Connor and Tremblay [O'Connor and Tremblay, 1997] report that 48.3%of all dynamic instructions only move data and constants between di�erent typesof registers.To eliminate these moves, register renaming has to be enhanced: instead ofmoving a value between two registers, the mapping table can be changed suchthat two logical registers are mapped to the same physical register and the moveinstruction can be squashed. This approach is similar to the copy eliminationapproach used in our JIT compiler. While this approach can be used to eliminatespurious moves, it complicates the management of physical registers becausemore than one logical register can be mapped to a single physical register. Toknow whether a physical register can be re-used, either a reference count �eldhas to be added to each physical register or a content-addressed search in themapping table is necessary.As discussed above, the problems arising from using the JavaVM as ISA canbe solved, but at the price of considerable hardware complexity and possible



cycle time penalties. We think that the hardware complexity invested in makingthe JavaVM ISA feasible would be better invested in additional performance-enhancing features, such as increased instruction-level parallelism.3.3 Hardware/Software solutionsAn alternative solution to using a brute force hardware implementation approachof the JavaVM is to design an architecture with appropriate support for inter-pretation or JIT compilation.An example of a VLIW architecture with extensive JIT support for binarycompatibility with various (CISC and RISC) instruction set architectures is theDAISY (Dynamically Architected Instruction Set from Yorktown) architecturereported in [Altman and Ebcio�glu, 1997]. Compatibility with di�erent old ar-chitectures (such as the x86, PowerPC, S/390 and the JavaVM) is achievedby using a JIT compilation technique. Altman and Ebcio�glu argue that withappropriate support, JIT compilation is an e�ective way to e�ciently supportdi�erent instruction set architectures while taking advantage of the increasedinstruction-level parallelism possible in VLIW machines.When performing just-in-time compilation, the primitive instructions foundin the target architecture should facilitate e�cient mapping from the emulatedarchitecture. For a JavaVM architecture, we have identi�ed a number of opera-tions crucial for e�cient execution:null pointer check The null pointer check can be implemented using the MMUin most microprocessors. By blocking access to the low memory area, allaccesses to a null pointer will generate a trap.bounds check Access to arrays requires a bounds check to validate the arrayindex. A single cycle implementation of the bound check is possible usingan unsigned variant of the subtract and trap on over
ow instruction (e.g.,SUBV on the Alpha).array access A register plus shifted register memory addressing mode can beused to optimize array accesses (such as found on the Motorola 88k). Whilenative code compilers can use strength reduction to eliminate many suchaccesses, JIT compilation can perform only \cheap" optimizations.method invocation For JavaVM applications register windows can be used toreduce the cost of method invocation. Dynamic opcode distribution showsa call/return to computational instruction ratio of 7.3 to 9.2, so e�cientmethod invocation is necessary to achieve good performance.constant pool PC-relative addressing allows to cheaply access the constantpool associated with each method.garbage collection Hardware support for e�cient garbage collection could beuseful, although our benchmarks suggest that garbage collection times arenot a major performance bottleneck.We feel that a combined hardware/software solution has the best potentialto achieve good performance in the execution of JavaVM code. A pure hardwaresolution is burdened with the complexity of some JavaVM instructions whichcan be resolved easily in software (such as translating lookupswitch to a cas-cade of conditional branches). On the other hand, a number of operations canbe optimized by using an appropriate hardware implementation and support asoftware-based JIT compilation scheme.



4 ComparisonIn this section, we compare the respective advantages of JIT compilation andcustom Java hardware for di�erent market segments. The suitability of the pos-sible solutions depends on the di�ering requirements of price, price/performanceor performance, as well as other characteristics.4.1 Memory requirementsIt has previously been argued that one of the advantages of JavaVM-based ap-plications is a small memory footprint, which is important for some marketsegments. To investigate this claim, we have performed some empirical mea-surements of key Java programs such as the javac compiler. To obtain thesemeasurements about program and data size for di�erent JavaVM implementa-tion approaches, we have instrumented our CACAO JIT compilation system toreport statistics about referenced class �les, JIT compilation and the generatedobject code. size (kB) hardware interpreter JIT batchheap > 2000 � � � �JavaVM code 149 � � �native code 447 � �constant pool 731 � � �virt. func. tbl. 103 � � � �runtime system 248 � �total 2983 3231 3678 2550The measurements were performed on a DEC Alpha, resulting in increaseddata requirements to accommodate 64 bit words and pointers. Requirements arereduced for architectures using smaller processor words. The constant pool asgiven in this table re
ects the size of the constant pool when decompressed intomemory for access. The original size of the constant pool was 484 kB. The sizeof the runtime system given here re
ects the size of the CACAO compiler, theJavaVM interpreter from Sun requires 455 kB.4.2 Embedded controlIn the embedded control market, JavaVM hardware (e.g., the picoJava-I) willtry to occupy a niche in the high end, competing with embedded control imple-mentations of RISC architectures, such as the PPC 403, the StrongARM, or theMIPS R4300.We can identify a number of problems associated with the use of JavaVM inthe embedded control market:{ Compiling directly for a target architecture o�ers signi�cant advantages(global optimizations).{ JavaVM hardware will su�er in this market from being speci�c to Java andsimilar languages.{ JavaVM code is not suitable for stand-alone applications in a ROM, as pro-gram operation requires that symbolic instructions be replaced by their quickcounterparts.



Most embedded control applications can a�ord compiling directly for the ar-chitecture of the target processor, instead of going through the JavaVM. This re-sults in higher code quality and lower memory requirements than for the JavaVMJIT compilation and simpler hardware than using the picoJava-I processor.In some applications, software is downloaded relatively frequently to the em-bedded computer; in these applications a standardized format like Java class �leswill often be preferred to an application or board-speci�c download format; thisleaves us with JavaVM hardware or JIT compilers, with JIT compilers su�eringpenalties due to their memory requirements.In the embedded control market the code size can be very important. Stackmachines in general and the JavaVM in particular are claimed to be very space-e�cient. The average instruction size for the JavaVM is said to be 1.8 bytes[O'Connor and Tremblay, 1997], but ignores additional resources required for theconstant pool. Conventional RISC instructions require 4 bytes, but architecturessuch as the ARM Thumb and the MIPS16 use a denser encoding. Moreover, aslong as we do not know if the programs for the di�erent architectures have thesame number of instructions, the average instruction length is meaningless.We think that it will be di�cult for JavaVM based solutions to replace thecurrently used designs used in the embedded market, because for most applica-tions, JavaVM based solutions do not have any inherent advantages.4.3 Low-end NCsFor low-end network computers, both direct JavaVM hardware and JIT com-pilation solutions are feasible. Some issues have been raised about the cost ofJIT compilation, but, actually, the required resources are moderate: the CACAOsystem requires about 250K for the program and compilation for a non-trivialprogram such as the javac takes 80 milliseconds and requires 50KB temporaryspace and 380K for the generated native Alpha code and constant area.One concern about a JIT compiler for an NC on a high-speed network maybe the increased load time for the applications. However, the loader has to checkthe class �le anyway, so there is already a delay. Moreover, JIT compilers likeCACAO, compile only those methods that are executed, when they are executed,minimizing compile time, space usage, and, in particular, the load delay.The code a JIT compiler produces is not as good as the code of a (slower)batch compiler. In particular, the register allocation is not as good, causinga higher number of moves. Only a simple instruction scheduler can be used.Finally, optimizations like strength reduction for array accesses that are notpossible in the Java!JavaVM compilation, are typically not performed by aJIT. The expected end result is similar performance between picoJava-I and aJIT compiler/simple RISC combination.4.4 High-performance NCsAs previously discussed, high-performance implementations of the JavaVM arecertainly possible: by using a register renamer and out of order execution, asuperscalar JavaVM processor implementation can be kept busy. Such an imple-mentation could conceivably outperform a JIT/high-performance RISC combi-nation, but at considerable hardware complexity and cost.Truly high-performance systems can be built at about the same complexitylevel by using VLIW architectures with appropriate JIT compilation support, asreported in [Altman and Ebcio�glu, 1997].



5 ConclusionIn this article, we have presented two implementation approaches of the JavaVM:the CACAO JIT compilation system and dedicated JavaVM hardware proces-sors. We have reviewed the potential of JavaVM compilers and JavaVM hard-ware. Because of greater 
exibility of compilers, support for other programminglanguages and similar performance at lower cost, we believe that JavaVM com-pilers are superior to JavaVM hardware.ReferencesAltman, Erik and Ebcio�glu, Kemal (1997). DAISY: Dynamic compilation for 100% ar-chitectural compatibility. In ISCA'97 - The 24th Annual International Symposiumon Computer Architecture. ACM, IEEE.Arnold, Ken and Gosling, James (1996). The Java Programming Language. Addison-Wesley.Diwan, Amer, Moss, J. Eliot B., and McKinley, Kathryn S. (1996). Simple and e�ectiveanalysis of statically-typed object-oriented programs. In Conference on Object-Oriented Programming Systems, Languages & Applications (OOPSLA '96), pages292{305.Ebcio�glu, Kemal, Altman, Erik, and Hokenek, Erdem (1997). A Java ILP machinebased on fast dynamic compilation. In MASCOTS'97 - International Workshopon Security and E�ciency Aspects of Java.Ertl, M. Anton (1992). A new approach to Forth native code generation. In Euro-Forth '92, pages 73{78, Southampton, England. MicroProcessor Engineering.Hayes, John and Lee, Susan (1989). The architecture of the SC32 Forth engine. Journalof Forth Application and Research, 5(4):493{506.Holmer, Bruce K., Sano, Barton, Carlton, Michael, van Roy, Peter, and Despain,Alvin M. (1996). Design and analysis of hardware for high-performance Prolog.Journal of Logic Programming, 29(1-3):107{139.Hsieh, Cheng-Hsueh A., Gyllenhaal, John C., and Hwu, Wen-mei W. (1996). Javabytecode to native code translation: The Ca�eine prototype and preliminary re-sults. In 29th Annual IEEE/ACM International Symposium on Microarchitecture(MICRO'29).Koopman, Jr., Philip J. (1989). Stack Computers. Ellis Horwood Limited.Krall, Andreas and Gra
, Reinhard (1997). CACAO { a 64 bit JavaVM just-in-timecompiler. Concurrency: Practice and Experience, 9:to appear.Lindholm, Tim and Yellin, Frank (1996). The Java Virtual Machine Speci�cation.Addison-Wesley.O'Connor, J. Michael and Tremblay, Marc (1997). picoJava-I: The Java virtual machinein hardware. IEEE Micro, 17(2):45{53.Ohran, Richard Stanley (1984). Lilith: a workstation computer for Modula-2. PhDthesis, ETH Z�urich.Proebsting, Todd A., Townsend, Gregg, Bridges, Patrick, Hartman, John H., New-sham, Tim, and Watterson, Scott A. (1997). Toba: Java for applications. Techni-cal report, University of Arizona, Tucson, AZ.Steele, Guy L. and Gabriel, Richard P. (1996). The evolution of Lisp. In History ofProgramming Languages, pages 233{309. ACM Press/Addison-Wesley.Ungar, David (1987). The Design and Evaluation of a High-Performance SmalltalkSystem. MIT Press.Wilkinson, Tim (1997). KAFFE: A free virtual machine to run Java code.http://www.kaffe.org.


