
Codegeneratoren

Sebastian Geiger
Twitter: @lanoxx, Email: sbastig@gmx.net

January 26, 2015

Abstract

This is a very short summary of the topics that are tought in “Codegeneratoren“. Code generators are the

backend part of a compiler that deal with the conversion of the machine independent intermediate representation

into machine dependent instructions and the various optimizations on the resulting code. The first two Sections

deal with prerequisits that are required for the later parts. Section 1 discusses computer architectures in order

to give a better understanding of how processors work and why di↵erent optimizations are possible. Section 2

discusses some of the higher level optimizations that are done before the code generator does its work. Section 3

discusses instruction selection, which conserns the actual conversion of the intermediate representation into machine

dependent instructions. The later chapters all deal with di↵erent kinds of optimizations that are possible on the

resulting code.

I have written this document to help my self studing for this subject. If you find this document useful or if you

find errors or mistakes then please send me an email.

Contents

1 Computer architectures 2
1.1 Microarchitectures . 2
1.2 Instruction Set Architectures . 3

2 Optimizations 3
2.1 Static Single Assignment . 3
2.2 Graph structures and memory dependencies . 4
2.3 Machine independent optimizations . 4

3 Instruction selection 5

4 Register allocation 6

5 Coallescing 7

6 Optimal register allocation using integer linear programming 7

7 Interproceedural register allocation 8
7.1 Global Register allocation at link time (Annotation based) . 8
7.2 Register allocation across procedure and module bounaries (Web) . 8

8 Instruction Scheduling 9
8.1 Phase ordering problem: . 9
8.2 Instruction scheduling for the IBM RISC System/6000 Processor (IBM) 9
8.3 E�cient Instruction Scheduling for a Pipelined Architecture (HP) . 10

9 Register allocation & instruction scheduling 11
9.1 Integrated Prepass Scheduling . 11
9.2 Dag-driven register allocation . 11
9.3 Register Allocation with Scheduling Estimate (RASE) . 11
9.4 Which algorithm should be prefered? . 12

10 Trace scheduling 12
10.1 Variable Location Mapping (VLM): . 12
10.2 Delayed binding . 12

1

11 Software pipelining 13
11.1 Modulo Variable Expansion . 13
11.2 Iterative modulo scheduling: . 13
11.3 Optimizations for processors with SIMD instructions . 14

11.3.1 SIMD Instruction Generation . 14
11.3.2 Alignment analysis . 14

1 Computer architectures

Codegenerators are dependent on the computer architecture they are designed for. Therefore a comprehensive under-
standing of the di↵erent concepts of computer architectures is requried. This capter can be roughly split into two main
aspects: microarchitectures and Instruction Set Architectures sometimes abbreviated ISA. The concept of mi-

croarchitectures referes to the hardware part of a processor, that is its di↵erent parts such as execution units, pipelines,
caches and such. The instruction set architecture defines the interface between the processor and its users (usually
assembler programmers or compiler writers). It is easy to see that a codegenerator is dependent on the instruction
set architecture it was designed for. For example a di↵erent codegenerator is needed for CISC and RISC computers.
But a codegenerator developer also needs a good understanding of the underlying microarchitecture in order to better
optimize the generated code. An example for such optimizations is the use of instruction level parallelism or code
scheduling to achieve a higher pipeline utilization. Below the most important concepts of microarchitectures and ISA
are explained.

1.1 Microarchitectures

Each processor is composed of many di↵erent hardware parts, that are all responsible for di↵erent things. The following
list gives an overview of the most important parts and their functions:

• Caches: Store some of the program code and data from memory to allow faster access. Separate instruction
and data caches can allow simultaneous instruction and data access every cycle.

• In/out of order execution: Realized by reorder bu↵ers. Instructions are dispatched to the reorder bu↵er
in-order but the executin units can execute the instruction out-of-order.

• Register renaming: Register renaming minimizes architectural resource dependencies, namely WAW and
WAR. Rename bu↵ers are used to implement register renaming.

• Reorder bu↵er: Saves instructions in-order, is used by the execution unit which can execute instructions
out-of-order.

• Precise interrupts: An interrupt is precise if the state of the processor includes the data of all instructions
before the instruction that caused the interrupt and no data from the instruction causing the interrupt or later
instructions. Processors that do not have precise interrupts are quite di�cult to program.

• Completion stage: Important for precise interrupts. Also separates completion stage and write-back stage to
support load- with-update instructions.

• Branch prediction: Used to avoid pipleine stalling. CPU predicts the branch before this information is
available.

• Branch target address cache: Used to predict the target address of a branch or jump instruction. The BTAC
is accessed with the fetch address and returns the target address.

• Branch history table: Stores information about whether a branch was taken or not, depending on the com-
plexity of the branch history table it is also possible to store patterns, such as, that a branch was only taken
every second time.

• Reservation station: Used to keep an instruction until its operands become available (The PowerPC 604 has
two reservation stations for each execution unit). This way instructions can be dispatched even if their operands
are not yet available.

• Superscalar architecture: A superscalare processor executes more then one instruction during a clock cycle
by simultaneously dispatching multiple instructions to redundand functional units on the processor, this can
include di↵erent functional units such as branch, integer, multiply, floating-point units, but also redundand
units of the same type such as four integer units. Examples for superscalar architectures in common processors
are:

– Hyperthreading (duplicates register space for the thread context)

– Multiple execution units (often combined with out of order execution)

2

– SIMD

– VLIW

• Pipelining: Increases the frequency of the processor, but also the latency, one instruction requires multiple
clock cycles. Instructions handling is split into several stages where each stage can handle one instruction at
a time. The instruction passes through several stages before its computation is complete. Typical stages are:
(Fetch, Decode, Dispatch, Execute, Write-back, etc.). The latency usually covers only the execution stage.
Example: In the first cycle an instruction is fetched by the fetch stage, then in the next cycle an new instruction
is fetched by the fetch station and the first instruction moves on to the decode station where it is decoded.
Problems of pipelining are called hazards and are caused by the increased latency of instruction results. Such
a hazard often appears if a second instruction depends on the result of a first instruction. It can be solved
with di↵erent techniques such as out-of-order execution. Another problem appears in combination with branch
prediction. If a branch is wrongly predicted, then the pipeline becomes invalid and must be restarted, which
leads to a penalty of several cycles.

1.2 Instruction Set Architectures

An instruction set architecture defines the programming interface of the processor. It includes aspects such as instruc-
tions, registers, data types and memory access, as well as interrupt handling and exception handling. The instruction
set architecture also defines how external I/O is done. Common instruction set architectures are:

• RISC Reduced Instruction Set Computer

• CISC Complex Instruction Set Computers:

• VLIW Very Long Instruction Word: Architectures which combine multiple instructions for parallel execution.

There are two very important di↵erences between CISC and RISC, one is the way memory access works, the
second is the instruction width. RISC uses a load-store architecture in which instructions that operate on the memory
are only used to load data into registers or store data from registers in memory, while all computation happens on
registers. CISC on the otherhand also allows operations to modify data directly inside the memory. The second big
di↵erence is the width of instructions. RISC has a fixed instruction width (such as 4 bytes) where as CISC has a
variable instruction width.

It is also important to note that pipelining and superscalar architectures can be problematic on CISC processors due
to the complexity of CISC instructions. Therefore CISC processors have introduced a concept called micro-operations,
where instructions are first converted into one or more micro-operation and are then dispatched an executed by the
processor. This fact however does not turn a CISC processor into a RISC processor, it is just an implementation detail
of the microarchitecture of CISC processors.

Instruction level parallelism

Instruction level parallelism (ILP) referes to the fact that many instructions are independent of each other and can be
executed simulaneously. It is used as a measure for the degree of parallelism in a given program. There are di↵erent
techniques to exploit this inherent parallelism in programs.

• In Software ILP can be exploited through a rescheduling of the instructions by the compiler.

• In Hardware the ILP can be exploited by many techniques of the microarchitecture such as instruction pipelin-

ing, superscalar execution, out-of-order exectuion, register renaming and branch prediction.

2 Optimizations

2.1 Static Single Assignment

Static single assignment (SSA) is an optimization required to enable most other optimizations, is a form where each
variable has only a single value assignment. Additional every variable must be defined before it is used. Every code
can be transformed into SSA form by adding indexes to variables:

3

i = 5 + 7

z = 8

i = i+ z

becomes:

i1 = 5 + 7

z = 8

i2 = i1 + z

When dealing with branches '-nodes are added to merge variables
from separate branches:

if(a)
i1 = 10

else
i2 = 20

i3 = '(i1, i2)

2.2 Graph structures and memory dependencies

Graph data structures are also required for most optimizations and contain information about data dependencies
between instructions, they are also often called dependency graphs. In general graphs can be separated into two
categories: acyclic graphs and cyclic graphs. Acyclic graphs are often used to model code inside basic blocks1 or
extended basic blocks. On the otherhand cyclic graphs are usually used to model loops or recursion and usually
extend over a whole proceedure and not just a basic block. In such graphs instructions (or operations) are represented
as vertices and data dependencies as edges. Depending on where the graph is used vertices and edges can be annotated
with additional information such as delayes between instructions.

The data dependencies that form the edges of a graph can be categorized into three kinds of dependencies:

• true dependency or read after write (RAW)

A = B + C write A

D = A+ 2 read A

• anti dependency or write after read (WAR)

A = B + C read B

B = D � 2 write B

• Output dependency or write after write (WAW)

A = B + C write A

D = A+ 2

A = E + F write A

Many of the optimizations that are introduced in this and the later chapters require a detailed knowledge of the
data dependencies between instructions.

2.3 Machine independent optimizations

Machine independent optimizations are performed on the intermediate representation and are independent of the
machine (i.e the instruction set architecture) being used.

• Scalar optimizations:

– Constant Evaluation: resolves expressions of multiple constans such as 5+7 which is resolved to 12

1 The concept of basic blocks is introduced in the compiler construction lecture and refers to a block of code with only one entry and
one exit point. That means in particular that basic blocks cannot contain loops or branches.

4

– Constant Propagation: propagates the constant to places in the code where variables refer to constants

– Copy Propagation: replaces the use of a variable with the use of another variable of equal value

– Common subexpression elemination: Opposite of rematerialization

– Scalar expansion: Propmote scalar to vector/array inside loop (used in SIMD and VLIW)

– Strength reduction: replaces expensive instructions by cheaper ones (eg. replace 5 ⇤ a with a >> 2 + a
since shift and add are cheaper than multiplication). Another meaning of strength reductions can concern
address optimizations in connection with indiction variables.

• Progam optimizations:

– Dead code elemination (reachable vs. useless code elimination)

– Function inlining (Speed) vs. Procedural abstraction (Code size)

– Tailcall elimination: Resolves recursion into iterative loops (very common in logic programming)

– Peephole optimization (very small optimization 2-3 instruction, hard to analyze)

• Induction variable elimination: is an optimization that tries to identify and remove the indiction variables inside
loops.

– The improved loop uses pointer arithmetic instead of an index variable

– Invariant code motion moves code that does not depend on the loop body out of the loop body

– Use information about induction variable for optimization

• Loop optimizations:

– Loop interchange (change inner and outer loop), the inverse function is still loop interchange

– Loop fusion vs. Loop fission (Splitting) (or distribution)

⇤ Loop peeling is special case of loop splitting that peels of one or more iterations from the beginning or
the end of the loop and performs these operations separately before or after the loop.

– Loop collapsing (collases inner and outer loop) vs. Strip mining

– Strip mining transforms a single loop into a doubly nested loop where is incremented by a certain block
size and the inner loop is incremented by one:

1 for(int j=0; j<N; j+=32) {

2 for(int i=j; i<min(j+31, N); i++) {

3 }

4 }

– Loop vectorization (SIMD, VLIW): The compiler analyzes the dependence graph and if no loops are found
it can make use of special vector instructions of the target processor.

– Loop concurrentization: Loops are split into several partitions and each partition is computed on a di↵erent
processor concurrently.

• Reorder transformation (like code scheduling but higher level, e.g. compiler frontend not backend). Uses
sophisticated dependency analysis.

3 Instruction selection

Instruction selection is a process which transforms the intermediate representation of the program into object code, by
selecting a machine instruction for each computation. The resulting object code after instruction selection is therefore
machine dependent. Instructions may have associated costs and the goal of instruction selection is to find a sequence
of instruction which have minimal costs.

There exist several implementations for instruction selection:

• iBurg is an improved version of Burg which was not discussed in the lecture. Its main advantage is that its
much simpler to implement (about 700 lines of code). Burg computes costs at generation time (compile-compile
time). In theory iBurg could support dynamic cost computation at instruction selection time (compile time),
but does does not do so in practice for backwards compatibility with Burg. Instructions are selected through
tree pattern matching and dynamic programming. The goal of tree pattern matching is to find a minimal cost
cover for the data flow tree that represents the operations of the intermediate language.

• BEG

BEG stands for Back End Generator. It is not only used for instruction selection but also includes register
allocation. The important aspects of BEG are:

5

– It is more advanced then iBurg

– Has a more powerful rule engine and supports dynamic costs and conditions for instruction selection.

– Can do register allocation, but only locally on basic block level

– Has two types of register allocation (on the fly, general register allocation)

• Dag driven instruction selection using PBQP:

Instruction selection is modeled as a partitioned boolean quadratic problem, which is an NP-Complete problem.
PBQP tries to find a cost minimal assignment h of variables X to their respective domains D:

h : X ! D

At the core of PBQP two functions are used, a local cost function c and a related cost function C, the sum f of
both forms the cost of an assignemnt for variables to their respective domains:

f =
X

ci +
X

Cij

The instruction selection with PBQP works like this. For each node u in the input DAG there exists a variable
xu which is mapped to an operation out of a list of possible operations for this node. The possible operations
are defined by a normalized graph grammar which consists of base rules and chain rules. The local cost function
is defined as a cost vector cu that defines the cost of assigning each operation to xu. Additionally the related
cost function is modelled as a matrix Cuv. It is used to “ensure consistency among base rules and to account for

the costs of chain rules” [9]. Its values are either zero for matching base rules, infinite for incompatible base
rules or a value which is the sum of transitive chain rule costs in order to make two non-matching base rules
compatible. In summary: “A solution of PBQP determines which base rules and chain rules are to be selected”

[9].

The PBQP based instruction selection also provides a solution for complex patterns such as “div-mod” or
“auto-increment”, however this can lead to cycles in the graph:

– SSA graphs model the data flow through registers, but not the dataflow through memory. That is, SSA
graphs do not reflect memory dependencies. This can lead to cylces which must be broken up by finding a
topological order among the patterns.

– Instructions with multiple outputs such as “div-mod” or “auto-increment for pointers” can cause cycles in
the graph. This can happen if “a set of operations in the SSA graph is matched by a pattern for which
there exists a path in the SSA graph that exits and re-enters the complex pattern within the basic block.
To ensure the existence of a topological order among the chosen productions those cycles must be broken
up. To break up the cycles the SSA graph is augmented with additional edges representing potential data
dependencies [9].

An important di↵erence between the di↵erent instruction selectors is when costs are computed. Burg and iBurg
do it at compile-compile time, where as BEG and PBQP do it are compile time.

4 Register allocation

There are three important algorithms. Chaitin and Briggs which use a graph coloring approach and Chow-Hennesey
which use a priority function.

• Chaitin: Builds a dependency graph and then tries to simplify the graph. Simplification happens by removing
nodes from the graph that have a degree which is less than the amount of available registers. The nodes are
placed on a stack for later coloring. If the graph reaches a state where no such nodes can be removed, then
Chaitin spills one node. The node to spill is selected through a cost function that assigns each node a weight
(cost divided by degree of the node) and then chooses the one where the cost for spilling is as low as possible. If
a node is spilled, then the graph is rebuild without that node and the algorithm is restarted. Otherwise when all
nodes have been removed from the graph the coloring phase starts. Each node is removed from the stack added
back to the graph, then it is assigned a color that is di↵erent from all its neighbours. This approach prevents
Chaitin from successfully coloring certain graph patterns such as the diamond pattern (cycle of four nodes) with
a minimum of 2 registers. Instead Chaitin needs one additional register.

• Briggs: Just like Chaitin, but it performs the spilling phase after the coloring phase, this has the e↵ect that
Briggs can color diamond patterns in the graph with a minimum of 2 registers instead of 3 like Chaitin does.

• Chow Hennesy: Chow Hennesy assume that all variables reside in memory and are loaded into registers as
required. This is the reverse concept of Chaitin and Briggs. A priority function is used to calculate the saving
if a variables is kept in a register. The variables which have the greatest savings are then selected to be stored
in registers. The algorithm reserves 4 registers for the code generator. If no suitable register is found, then live
range splitting is applied.

6

Di↵erences between the algorithms:

• Both Chaitin and Briggs algorithms need multiple iterations where as Chow-Hennesy finishes in one iteration.

• Chaiting and Briggs do the life range analysis on instruction level where as Chow-Hennesy perform life range
analysis on basic block level.

• Chaitin and Briggs do register allocation for all registers, where as Chow-Hennesy only do register allocation
outside of basic blocks.

Live range splitting: TODO, Live range splitting can be added to Chaitin and Brigg but was not present in the
original algorithms.

Calling conventions: Calling conventions are conventions about how registeres are used and who is responsible to
save and restore them. There are caller-saves and callee-saves registers. The conventions are a result of a multi-step
proceedure. First the architecture has an impact on the calling conventions, then the operating system and lastly
the used programming language. Calling conventions are part of the ABI and if not taken care of they my cause
incomparibilities between programm binaries such as if libraries are used or programms written in di↵erent languages
interact.

Pre-coloring: Precoloring is used to assign correct colors to argument registers to avoid unnecessary copy instruc-
tions.

5 Coallescing

Coallescing is a form of copy elemination that finds registers that are copies of each other and removes the copy
instruction, thus putting the values into the same register. Coallescing may a↵ect the colorability of an interference
graph (both negative and positive results are possible).

• Aggressive coallescing (used by Chaitin): Remove all possible copy instructions, may result in increased spilling.

• Conservative coallescing: Performs coallescing only when graph colorability is not a↵ected. Was intended to be an
improvement but later analysis showed that the algorithm actually performed worse than aggressive coallescing.

• Iterative coallescing: Eliminates more copies by interleaving conservative coallescing with simplification phases
(like Briggs). Also has worse results than aggressive coallescing.

• Optimistic coallescing: Aggressive coallescing, but the algorithm memorizes what has been coallesced. If coloring
is not possbile and nodes need to be spilled, then the coallscing is reversed by live range splitting and then only
parts of the nodes are spilled if possible. Best results.

6 Optimal register allocation using integer linear programming

Performance overhead of spill code is minimized by using integer linear programming to achieve near optimal results.
Since the problem is NP-complete an optimal solution will be instractable for very complex problems. However the
Optimal Register Allocator (ORA) solver still produces very good results that are very often within 1% of the optimal
solution. However in order to define what optimal means we need to know which optimizations are being done by the
register allocator.

• What does the register allocator do and not do?

1. The register allocator does not reorder instructions.

2. The register allocator adds only spill load instrucitons, spill store instrucitons, and rematerialization in-
structions.

3. The register allocator removes only copy instructions and instructions defining symbolic registers that are
rematerialized.

4. All controll-flow paths throguh a function can potentially execute.

5. At a given location, the cost of a spill instruction is a fixed number of cycles (based on the instrucitons’
type) times the location’s estimated execution count.

6. A basic block’s estimated execution conut equals the sum of the countes exeiting the block, i.e. estimated
execution counts satisfy Kirchho↵’s current law over the control flow graph.

7

• What means rematerialization? Sometimes its cheaper to recompute a value than to store it in a register.
This is often the case if a value can be recomputed with a single instruction. rematerialization is often used in
address calculation.

• Improvement of the paper: The authors improved their own paper after 6 years and reduced the complexity
of the algorithm from n3 to n2.5. They also improved the speed by a factor of 1000x (10x CPU, 10x better
solver, 10x improved model).

TODO: Describe the three modules (steps): Analysis, Solver and Rewrite module

7 Interproceedural register allocation

Interproceedural register allocation (which is also often called global register allocation) performs register allocation
accross proceedures or compilation units and not just within a single function as is done in global register allocation.
This solves the problem that di↵erent functions may assign the same global variable to di↵erent registers or the same
register to di↵erent local variables, which causes unnecessary copy instructions.

7.1 Global Register allocation at link time (Annotation based)

Global here means interproceedural accross all compilation units. The register allocation is split into three parts:

• Compiler

• Register allocator

• Linker

The compiler does as much work as posible in order to maximize the benefits of seperate compilation such that in
the linking phase there is not too much work required. The compiler inserts annotations into the object code which
describe how variables are used. Annotations provide information to the linker about how to replace variables and
how to rewrite the code.

There are the following annotations:

• REMOVE

• STORE

• LOAD

• OP1, OP2, RESULT

The register allocator generates a call graph and uses the information provided by the compiler assign variables to
registers. It does this by building groups of variables that are not active at the same time and then assigns are usage
frequency to those groups. The same happens for global variables. Finally the groups with the highest freuqencies are
allocated to registers. After variables have been assigned to registers the linker can use this information rewrite the
code and to apply the actions that have been stored in the annotations. While doing this it must take care to adjust
addresses of instructions or data if a previous instruction is being removed.

Additional considerations concern initialization and recursion.

Initialization

Special care must be taken to initialize global variables and proceedure parameters. For global variables an INIT action
is placed at the beginning of the program and runs when the program is invoked. The INIT action adds instructions
to copy the initial value of global variables from memory to the respective register.

Recursion and indirect calls

Recursion means that the same proceedure my be called repeatedly befor the first invokation has been completed.
Therefore the program needs to take care to save the necessary registers of local variables before the next invokation
of the proceedure. The question is who should be responsible to save the local varibles of the proceedure. It turns
out that it is not enough if each recursive proceedure is responsible to save its local variables because this would not
archive local variables of other proceedures in the call chain. The solution is to let the proceedure that makes the
recursive call save the local variables of all proceedures in the call chain. The same solution is used for indirect calls.

7.2 Register allocation across procedure and module bounaries (Web)

This has two important parts, the web algorithm itself and clustering (e.g. spill code motion).

8

Web algorithm:

Performs several steps:

1. Reads in source files and produces intermediate representation files.

2. Creates program database.

3. Uses Program database and transforms intermediate representation files into object files.

4. Linking of the object files.

The web algorithms creates a table with L REF, P REF, and C REF entries from which a web interference graph is
generated. This is then used to apply a coloring on the graph that determines which register is being used for each
global variable.

Clustering (Splill code motion):

The idea is to move spill code for callee-saved registers inside a cluster from one node to its dominating node. If the
node is being called more than once, then the overhead of the spill code is reduced. Same for caller-saved registers
which are moved down to lower nodes in the same cluster.

8 Instruction Scheduling

Instruction scheduling is an optimization that deals with rearranging the instructions of a program to better exploit
the inherent parallelism of the instructions. The goal is to move instructions that depend on each other further appart
and instead insert independent instructions inbetween. This prevents that dependent instructions block the processor
pipeline and allows a more instructions to execute simultaneously. The simplest form of instruction selection is called
list scheduling because from a list of possible instruction that can be scheduled one with the highest priority is selected
based on some kind of heuristic. There exist two papers that deal with list scheduling which both present di↵erent
heuristics for the problem. The list scheduling algorithms presented in the papers have a worst case complexity of
O(n2) needed to build the dependency graph. However in practice there exists also a linear time algorithm.

The improved linear time algorithm works as follows. The algorithms goes through each instruction and each
time a register is defined the algorithm saves which instruction defined the register. Each time a register is the
corresponding instruction can be looked up and the algorithm adds a dependency to the graph. The only problem
with this algorithm is that the initialization of the corresponding data structure may be expensive. However this can
be optimized when using virtual registers by storing from which instruction to which instruction a basic block extends.
Based on these limits it can be easily determined if an instruction is still independent. Otherwise the datastructures
would need to be rebuild for each basic block.

8.1 Phase ordering problem:

A problem between instruction scheduling and register allocation is that both optimizations can have negative e↵ects
on the other one, thus it is di�cult to decide what should be done first - register allocation or instruction selection.
This problem is called the phase ordering problem. The list scheduling algorithms below attempt di↵erent solution
but still perform both optimizations separately. A better solution is discussed in the next section which presents
algorithms that perform instruction scheduling and register allocation together at the same time.

The impact of each optimization to the other is as follows:

• Register allocation serializes the code and removes opportunities for scheduling (less instruction level parallelism).

• Instruction scheduling increases the length of the live ranges (register pressure), causing more interferences and
thus requires the use of more registers.

8.2 Instruction scheduling for the IBM RISC System/6000 Processor (IBM)

The algorithm which is described in this paper performs the instruction scheduling twice, once before register allocation
and once afterwards. The first instruction scheduling has more freedom since register allocation has not yet been
done, but register allocation may insert spill code and delete move instruction which make a second run of instruction
scheduling necessary. The algorithm itself works as follows:

• It uses a dependency graph which is constructed for each basic block. The dependency graph has one node for
each instruction and adds a directed edge between two instructions if one needs to preceed the other.

• Edges are labeled with the delay between instructions.

• After the dependency graph has been build, nodes are labled upwards with the maximum delay from the node
to the end of the basic block (red digits in figure 1).

9

• The algorithm keeps a current time counter, which is inizially zero. It is increased by the execution time of
each scheduled instruction, which is usually one.

• Nodes are labels with earliest time value which is calculated from the current time of the last scheduled
predecessor plus the delay of that instruction to its successor. For example the node L.B has a delay of one and
is scheduled in step 2 where the current time is increased to 2, so the ADD node would be labled with an earlies
time of 3 (2+1).

Figure 1 shows the a dependency graph from the paper but adds the values of the maximum delay and a table
that shows how the current time is updated and which instruction is selected in each step.

L.B
1

L.C
1

L.D
1

L.E
4

ADD
0

SUB
0

ST.A
0

CMP
3

BC
0

1 1

10

0

0

3

1

1. Current time: 0 ! 1; select L.E
2. Current time: 1 ! 2; select L.B
3. Current time: 2 ! 3; select CMP
4. Current time: 3 ! 4; select L.C
5. Current time: 4 ! 5; select L.D
6. Current time: 5 ! 6; select ADD
7. Current time: 6 ! 7; select SUB
8. Current time: 7 ! 8; select ST.A
9. Current time: 8 ! 9; select BC

0 Maximum delay

Figure 1: Dependency graph constructed by IBM instruction scheduling algorithm

When deciding which node to select in each step, the algorithm uses an eight step heuristic. Since there is no
planning or lookahead involved the algorithm is not guaranteed find the best solution. There are the following eight
heuristics:

1. Initialize the set of all those instructions that have not yet been selected, and that have no predecessors in the
dependency graph (these are the ”legal“ ones).

2. Refine the subset to those instructions whose earliest time has arrived or, if none, those with the smallest earliest
time.

3. If one or more instructions have been selected, and if the current subset contains one or more instructions of
opposite type (fixed/floating) from the last one selected, then refine the current subset to those of this opposite
type.

4. Refine the subset to those of maximum total delay along the path of each instruction to the end of the basic
block.

5. Refine the subset to those of minimum ”liveness weight“.

6. Refine the subset to those with greatest uncovering”.

7. Refine the subset to the unique instruction that came first in the original ordering.

8.3 E�cient Instruction Scheduling for a Pipelined Architecture (HP)

The general idea is similar to the IBM algorithm. The algorithm works as follows:

1. Build a scheduling dag over the basic block

2. Put the roots of the dag into a candidate set

3. Select the first instruction to be scheduled based on the heuristics below

4. While the candidate set is not empty do the following:

10

(a) based on the last instruction scheduled and the heuristics select and emit the next instruction that should
be scheduled

(b) delete the instruction from the dag and add any newly exposed candiates

The following heuristics use the following criteria to determine the priority with which a candidate should be
scheduled:

1. Whether an instruction interlocks with any of its immediate successors in the dag.

2. The Number of the immediate successors of the instruction

3. The length of the longest path from the instructions to the leaves of the dag.

The instruction scheduling in is performed before register allocation. The paper mentions register allocation but
claims that ”serializing definitions does not unduly restrict [the] code“.

9 Register allocation & instruction scheduling

This section introduces three methods which combine instruction scheduling and register allocation in order to solve
the phase ordering problem. The first paper presents two algorithms the Integrated Prepass Scheduling (IPS) and
the dag-driven register allocation. The second paper introduces a method named Register Allocation with Scheduling
Estimate (RASE).

9.1 Integrated Prepass Scheduling

The main issue of the phase ordering problem is that register allocation reduces opportunities for scheduling while
instruction scheduling increases the length of live range making register allocation more di�cult. The IPS algorith
solves this problem by using two strategies that can be selected depending on what strategy is more appropriate. The
two strategies are:

• CSP (Code scheduling for pipelined processors) reduces pipeline delays but can increase the lifetime of registers.
It is used if enough free registers are available.

• CSR (Code scheduling to minimizes register usage) is used when the number of registers is low to control register
usage. It tries to ”find the next instruction which will not increase the number of live register or if possible,
decrease that number“.

IPS uses a simple heuristic to switch between the two strategies, it keeps track of the number of available registers in
a variable named AVLREG, if the number of free registers drops below a certain threshold, then it switches to CSR.
When AVLREG has increased above the threshold then it switches back to CSP.

9.2 Dag-driven register allocation

Dag-driven register allocation tries is a form of postpass scheduling to keep the graph flat and wide. It also does not
insert any additional spilling instructions into the code. The algorithm introduces two measures for the graph the
width and the height:

• The width is defines as the maximum number of mutually independent nodes. Wider graphs indicate higher
parallelism.

• The height is the length of the longest path. If the graph is too high then code scheduling becomes less e�cient.

The goal of the dag-driven register allocator is to reduce the height of the graph and limit the width of the graph to
a number that is less or equal to to the amount of registers available.

TODO: Explain better

• Makes uses redundant dependencies when allocating registers.

• Tries to balance the graph

• Inserts dependencies in such a way that the critical path does not become longer

11

9.3 Register Allocation with Scheduling Estimate (RASE)

The RASE approach is an integrated scheduling and register allocation method. The idea behind RASE is to perform
a pre-scheduling in order to calculate schedule cost estimates that enable the register allocator to make a decision
about how many registers it is going to use. Essentially RASE splits the available registers into two parts, one part
for the register allocator, and one part for the instruction scheduler. The RASE algorithm has three phases:

• Pre-scheduling

• Global register allocation

• Instruction scheduling with local register allocation

The first phase is the pre-scheduling, which calculates the schedule cost estimate. During the pre-scheduling, the
order of the instructions is not changed.

The second phase performs a global register allocation using the schedule cost estimate, but leaves enough free
registers for the last phase. The schedule cost estimate allows the register allocator to estimate, how the cost of
local register allocation increases, if it uses more registers to allocate global pseudo-registers. In the second phase the
register allocator is only responsible for allocating global pseudo-registers to physical registers, the allocation of local
pseudo-registers is defered until the third phase.

The third phase performs the instruction scheduling and does the local register allocation. This register allocation
must be within the limits for local registers that have been determined in the second phase.

How does the schedule cost estimate function work? The schedule cost estimate is a quadratic function (of
regressive form). It takes as input the number of local registers and returns as output the estimated machine cycles:

5 10 15 20
200

300

400

500

600

Number of local registers

E
st
im

at
ed

m
ac
h
in
e
cy
cl
es

schedcostb(x) = c+ d/x2

Figure 2: Schedule cost estimate function

The coe�cientes c and d are computed as part of the pre-scheduling. Essentially this function allows the register
allocator to estimate how much the required machine cycles are incresed, due to loss of parallelism, if the available
local registers are reduced. As can be seen in Figure 2, if the register allocator leaves 15 registers to the third phase,
then the total execution cost for that basic block it not very high, however if only 4 or 5 registers are left to the third
phase, then the cost increases quite significantly.

9.4 Which algorithm should be prefered?

When comparing the three algorithms one can say that IPS is the ”best“ algorithm, because it is realively easy to
implement and produces results which are comparable to the other two solutions. The IPS algorithms can be easily
implemented in existing register allocators such as Chaitin or Briggs. In contrast the DAG driven algorithm and
RASE are both quite complicated to implement but do not produce significantly better results.

10 Trace scheduling

Trace scheduling attempts to provide another solution for the phase ordering problem. A trace is a sequence of
instructions that can have exit and entry points but that must not have any loops. The trace scheduler

12

orders traces by their frequency and schedules the most frequent trace first. Inner most loops usually contain the
traces with the highest frequency and are thus scheduled first. Since the instruction scheduler is also responsible for
assigning variables to registers, this scheduling approach e↵ectively gives priority to those variables, which are used
with the highest frequency. The advantage of this approach is that at the beginning all registers are available for use
by the scheduler, giving the scheduler complete choice over registers with the highest frequency.

Since traces are scheduled individually of each other care must be taken if two traces merge with each other or
split from each other. This can either happen at split nodes, when one trace leaves from the other, or at join nodes,
when one trace joins into another. Since the traces are scheduled and register allocated individually there needs to
be a machanism to communicate register allocation decisions between traces. This is done by adding special nodes
named Value Location Mapping (VLM).

10.1 Variable Location Mapping (VLM):

A VLM is placed at the split or join nodes between two traces and contains the information about already allocated
variables. So when a trace is scheduled that contains a variable which has already been allocated, then the scheduler
can take this decision into account. It tries to ensure that individually scheduled traces reference their values at the
same locations to avoid unnecessary data motions such as register moves, spills and restores. If a VLM appears at the
beginning of a trace, then the scheduler must make sure to read values that appear in the trace from the locations
specified in the VLM. On the other hand, if a VLM appears at the end of a trace, then the scheduler must make sure
to satisfy the references in the VLM, that is, it must store values that appear in the trace at the locations specified by
the VLM. Sometimes it may not be possible to satisfy the constraints in a VLM. This can happen if there is a VLM
both at the top and bottom of a trace and both VLMs have conflicting locations for the same variable. If it is not
possible to satisfy the location constraints in a VLM, then the scheduler must insert compensation code to move
or copy values to the correct locations.

10.2 Delayed binding

Delayed binding is used because some values have live ranges that go through a trace but the value is not actually
used inside the trace. ”A delayed binding is a sort of pseudo-location that may be assigned to an unreferenced value

by the instruction scheduler.” Delaying the variable binding until there is an actual reference to it helps to preserve
registers for more important values. When a delayed binding is bound to an actual location it is determined if there
exists an unused register that is free through out the whole live range of the value, otherwise the value is bound to
memory.

Paper Evaluation: The evaluation of the trace scheduling paper is not useful, because the results are only
compared to themselves.

11 Software pipelining

Software pipelining is a form of instruction scheduling with the goal of scheduling the di↵erent instructions of a loop
in a way, such that multiple loop iterations can be active at the same time.

11.1 Modulo Variable Expansion

One problem in software pipelining is that a variable is defined and then used two cycles later. If this variable remains
in the same register during every loop iteration, then each iteration must take two cycles. However if copies of the
variable are kept in di↵erent registers for consequtive iterations, then it is possible to start a new operation in each
cycle. This concept of using multiple registers for the same variable is called modulo variable expansion.

11.2 Iterative modulo scheduling:

Di↵erent scheduling strategies exist in software pipelining, the iterative modulo scheduling is a form of the “schedule-
then-move” stategy. The goal of iterative modulo scheduling is to find a schedule for the instructions of a loop body,
such that the loop can be repeated at regular intervals, without causing any conflicts between the instructions. There
are two types of conflicts that can occur, a resource conflict or a dependency conflict:

• Resource conflict: The same processor resource such a bus or a pipeline stage are in use at the same time.

• Dependency conflict: Can be an inter-iteration-dependency if there exists a dependency between instructions in
two di↵erent iterations of a loop or an intra-iteration-dependency if there is a dependency between two instruction
in the same loop iteration.

Before the actual iterativev modulo scheduling is performed several other optimizations and transformations are
performed, one of them is IF-conversion. IF-conversion removes all branches except the loop closing branch and

13

converts the code into a single basic block. The di↵erent branches of the original code are instead expressed by data
dependencies involving predicates.

Iterative modulo scheduling introduces the notion of an initiation intervals (II) which is the interval between
the start of a new loop iteration. An II of four means that every 4-th instruction a now loop iteration begins. A
minimum initiation interval (MII) is calculated and used to calculate the minimum length of a schedule. To
compute the actual II a candidate II is used that is initialy set to the MII and then step wise incremented until a
suitable II is found. The MII is the maximum of the Resource constraint MII and Recurrence constraint MII values:

• The Resource-constrained MII used to avoid that two instructions block the same processor resource at the
same time. For example if an add instruction requires to use the result bus in the fourth cycle and a multiply
instruction requires the result bus in the sixth cycle, then an add cannot be sheduled two cycles after a multiply.
The ResMII can be computed by performing a bin- packing of the reservation tables for all the operations.

• The Recurrence-constrained MII is used prevent data dependencies between the same operations in di↵erent
loop iterations.

The iterativ modulo scheduling starts with the initially computed II and tries to find a valid schedule for this II and
a given budget. If no schedule can be found the II is increased by one and the proceedure is repeated until a schedule
is found. There are some di↵erences between the traditional acyclic list scheduling and iterative modulo scheduling:

• Instructions can also be unscheduled and rescheduled, thus operation scheduling instead of instruction scheduling
is performed. Operation scheduling picks an instruction and scheduls it at a time slot that is both legal and
most desirable.

• Instructions do not become “ready” after their predecessors have been scheduled. Instead the algorithm keeps
track of which instructions have never been scheduled and schedules instruction based on a priority function.

• If an instruction is unscheduled it is immediately rescheduled.

11.3 Optimizations for processors with SIMD instructions

Processors with SIMD instructions allow to execute the same sequence of instructions on multiple instances of data
such as an array. For this purpose the data must be naturally aligned on the block size. If the alignment cannot
be statically determined at compile time then the compiler needs to insert dynamic runtime checks that verify if the
pointers are aligned. If the pointers are aligned then SIMD instructions can be used, otherwise the memory is accessed
sequentially. These dynamic checks increase the program size and impact the execution speed. Not only the dynamic
checks increase program size, but also the fact that there need to be two versions of a loop, one version with SIMD
instruction and another version which accesses memory locations sequentially.

Describes an analyzation technique to statically identify the alignment of C pointers. The alignment information
can then be used to reduce dynamic alignment checks and thus reduce the overhead of those checks. About 50% of all
pointers can be statically identified. The first part of the paper describes the code generator that is used to generate
SIMD instructions.

11.3.1 SIMD Instruction Generation

The SIMD instruction generation consists of two phases:

• Phase 1 deals with the generation of logical and arithmetical SIMD instruction inside loops that process arrays.

• Phase 2 deals with the generation of LOAD and STORE SIMD instructions for data that is used by the logical
and arithmetical SIMD instructions which have been generated in phase 1.

In order to generate logical and arithmetical SIMD instructions from loops the lop may be unrolled a few times.
For example if a loop processes 16bit elements and the SIMD operands are 32bit then the loop needs to be unrolled
two times. If the loop count is not a multiple of two then a pre- or postloop is added which is executed N mod K
times, where K is the unroll count and N the loop count. Depending on alignment information a preloop or a postloop
is added.

For the generation of SIMD instructions an acyclic dependency graph is generated from the unrolled loop version.
The nodes in the graph are s-nodes (statement nodes) and b-nodes (groups of basic blocks). The algorithm first
schedules s-nodes that are not candidates for SIMD instructions as well as all b-nodes. Then it tries to find a series
of s-nodes which are structurally equivalent and combines them into a SIMD instruction. To identify the instructions
that can be combined into SIMD nodes, the algorithm builds “all possible combinations of SIMD candidates and

rates them according to the number of resulting SIMD expressions and the number of adjacent subwords in the SIMD

expressions”. Scheduled nodes are removed from the dependency graph and the proceedure is repeated until the graph
is empty.

The algorithm als applies scalar expansion and accumulator splitting. Scalar expansion replaces a scalar by an
array which contains copies of the scalar, such that it can be used with SIMD instructions. Accumulator splitting is
used in reductions such as calculating the sum of an array. The array is split into several smaller arrays for which the
sum can be calculated in parallel, the results is then a smaller array from which the final result can be computed.

14

11.3.2 Alignment analysis

• Intra procedural alignment analysis

• Inter procedural alignment analysis

References

[1] The PowerPC 604 RISC Microprocessor (S.P. Song & M.D. Denman), 1994

[2] Alpha AXP Architecture (R.L. Sites), 1993

[3] Discorvery 6 - Intels Sternenschi↵ P6 im Detail (G. Schnurer), ct’ 4/1995

[4] Advanced Compiler Optimizations For Supercomputers (D.A. Padua & M.J. Wolfe), 1986

[5] The CONVEX FORTRAN 5.0 Compiler (R. Mercer), 1988

[6] E↵ectiveness of a Machine-Level, Global Optimizer (M. S. Johnson & T.C. Miller), 1986

[7] Engineering a Simple - E�cient Code Generator Generator (C.W. Fraser, D.R. Hanson, T.A. Proebsting), 1992

[8] BEG - a Generator for E�cient Back Ends (H. Emmelmann, F-W. Schröer, R. Landwehr), 1989

[9] Generalized instruction selection using SSA graphs (Andreas Krall et all.), 2006

[10] Coloring Heuristics for Register Allocation (P. Briggs, K.D. Cooper, K. Kennedy, L. Torczon), 1989

[11] Register Allocation & Spilling via Graph Coloring (G.J.Chaitin), 1982

[12] Register Allocation via Coloring (G.J.Chaitin, M.A. Auslander, A.K. chandra, J. Cocke), 1980

[13] The Priority-Based Coloring Approach to Register Allocation (F.C. Chow & J.L. Hennessy), 1990

[14] Optimistic Register Coalescing (J. Park & S-M. Moon), 1998

[15] Optimal and Near-optimal Global Register Allocation Using 0-1 Integer Programming (D.W. Goodwin & K.D. Wilken), 1996

[16] A Faster Optimal Register Allocator (C. Fu & K. Wilken), 2002

[17] Global Register Allocation at Link Time (D.W. Wall), 1986

[18] Register Allocation Across Proceedure and Module Boundaries (V. Santhanam & D. Odnert), 1990

[19] Instruction scheduling for the IBM RISC System/6000 processor (H.S.Warren), 1990

[20] E�cient Instruction Scheduling for a Pipelined Architecture (P.B. Gibbons, S.S. Muchnick), 1986

[21] Code Scheduling and Register Allocation in Large Basic Blocks (J.R. Goodman & W-C. Hsu), 1988

[22] Integrating Register Allocation and Instruction Scheduling for RISCs (D.G. Bradlee, S.J.Eggers, R.R. Henry), 1991

[23] Phase Ordering of Register Allocation and Instruction Scheduling (S.M. Freudenberger & J.C. Ruttenberg), 1991

[24] Software Pipelining: An E↵ective Scheduling Technique for VLIW Machines (M. Lam), 1988

[25] A Realistic Resource-Constrained Software Pipelining Algorithm (A. Aiken, A. Nicolau), 1990

[26] Iterative Modulo Scheduling: An Algorithm For Software Pipelining Loops (B.R Rau), 1994

[27] Compiler optimizations for processors with SIMD instructions (I. Pryanishnikov, A. Krall, N. Horspool), 2006

15

	Computer architectures
	Microarchitectures
	Instruction Set Architectures

	Optimizations
	Static Single Assignment
	Graph structures and memory dependencies
	Machine independent optimizations

	Instruction selection
	Register allocation
	Coallescing
	Optimal register allocation using integer linear programming
	Interproceedural register allocation
	Global Register allocation at link time (Annotation based)
	Register allocation across procedure and module bounaries (Web)

	Instruction Scheduling
	Phase ordering problem:
	Instruction scheduling for the IBM RISC System/6000 Processor (IBM)
	Efficient Instruction Scheduling for a Pipelined Architecture (HP)

	Register allocation & instruction scheduling
	Integrated Prepass Scheduling
	Dag-driven register allocation
	Register Allocation with Scheduling Estimate (RASE)
	Which algorithm should be prefered?

	Trace scheduling
	Variable Location Mapping (VLM):
	Delayed binding

	Software pipelining
	Modulo Variable Expansion
	Iterative modulo scheduling:
	Optimizations for processors with SIMD instructions
	SIMD Instruction Generation
	Alignment analysis

