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Who am I?
Helped build Jikes RVM (1998-2006)

– GC Maps, live analysis, dominators, register allocation refactoring
– Adaptive optimization system
– Management, project promotion, education, etc.

Work for IBM, home of 2 other Java VMs 
– IBM DK for Java, J9

In previous lives, worked on 
– Automatic parallelization (PTran)
– Ada implementation (Phd Thesis)
– Interprocedural ptr analysis 
– Professor for 6 years

Excited to share what I know
– And learn what I don’t!
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Course Goals

Understand the optimization technology used in production 
virtual machines

Provide historical context of dynamic/adaptive optimization 
technology

Debunk common misconceptions

Suggest avenues of future research
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Course Outline

1. Background

2. Engineering a JIT Compiler

3. Adaptive Optimization

4. Feedback-Directed and Speculative Optimizations

5. Summing Up and Looking Forward
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Course Outline
1. Background

Why software optimization matters
Myths, terminology, and historical context
How programs are executed

2. Engineering a JIT Compiler
What is a JIT compiler?
Case studies: Jikes RVM, IBM DK for Java, HotSpot
High level language-specific optimizations
VM/JIT interactions

3. Adaptive Optimization
Selective optimization
Design: profiling and recompilation
Case studies: Jikes RVM and IBM DK for Java
Understanding system behavior
Other issues

4. Feedback-Directed and Speculative Optimizations
Gathering profile information
Exploiting profile information in a JIT

Feedback-directed optimizations
Aggressive speculation and invalidation

Exploiting profile information in a VM
5. Summing Up and Looking Forward

Debunking myths
The three waves of adaptive optimization
Future directions
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Course Outline - Summary

1. Background
Why software optimization matters
Myths, terminology, and historical context
How programs are executed

2. Engineering a JIT Compiler

3. Adaptive Optimization

4. Feedback-Directed and Speculative Optimizations

5. Summing Up and Looking Forward
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Developing Sophisticated Software

Software development is difficult

PL & SE innovations, such as
– Dynamic memory allocation, object-oriented 

programming, strong typing, components, 
frameworks, design patterns, aspects, etc.

Resulting in modern languages with many benefits
– Better abstractions
– Reduced programmer efforts
– Better (static and dynamic) error detection 
– Significant reuse of libraries

Have helped enable the creation of large, sophisticated 
applications

AOP, Perl, J2EE, etc.Productivity Binary
AssemblyC

C++

Java

2000’s1940’s
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The Catch
Implementing these features pose performance challenges 

– Dynamic memory allocation 
– Need pointer knowledge to avoid 

conservative dependences
– Object-oriented programming

– Need efficient virtual dispatch, 
overcome small methods, 
extra indirection

– Automatic memory management
– Need efficient allocation and 
garbage collection algorithms

– Runtime bindings
– Need to deal with unknown 

information
– . . .

Productivity
Binary

Assembler

C

C++

Java

AOP, Perl, J2EE, etc.

Performance 
Challenge

2000’s1940’s

Features require a rich runtime environment virtual machine
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Type Safe, OO, VM-implemented Languages Are Mainstream

Java is ubiquitous
– eg. Hundreds of IBM products are written in Java

“Very dynamic” languages are widespread and run on a VM
– eg. Perl, Python, PHP, etc.

These languages are not just for traditional applications
– Virtual Machine implementation, eg. Jikes RVM
– Operating Systems, eg. Singularity
– Real-time and embedded systems, eg. Metronome-enabled systems
– Massively parallel systems, eg. DARPA-supported efforts at IBM, Sun, 

and Cray

Virtualization is everywhere
– browsers, databases, O/S, binary translators, VMMs, in hardware, etc.
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Have We Answered the Performance Challenges?

So far, so good …
– Today’s typical application on today’s hardware runs as fast as 

1970s typical application on 1970s typical hardware
– Features expand to consume available resources…
– eg. Current IDEs perform compilation on every save

Where has the performance come from?
1. Processor technology, clock rates (X%)
2. Architecture design (Y%)
3. Software implementation (Z%)
X + Y + Z = 100%

• HW assignment: determine X, Y, and Z
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Future Trends - Software
Software development is still difficult

– PL/SE innovation will continue to occur
– Trend toward more late binding, resulting in dynamic requirements
– Will pose further performance challenges

Real software is now built by piecing components together
– Components themselves are becoming more complex, general purpose
– Software built with them is more complex

– Application server (J2EE Websphere, etc), application 
framework, standard libraries, non-standard libraries (XML, etc), 
application

– Performance is often terrible
– J2EE benchmark creates 10 business objects (w/ 6 fields) from 

a SOAP message [Mitchell et al., ECOOP’06]
> 10,000 calls
> 1,400 objects created

– Traditional compiler optimization wouldn’t help much
– Optimization at a higher semantic level could be highly profitable
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Future Trends – Hardware

Processor speed advances not as great as in the past (x << X?)

Computer architects providing multicore machines
– Will require software to utilize these resources
– Not clear if it will contribute more than in the past (y ? Y)

Thus, one of the following will happen
– Overall performance will decline
– Increase in software sophistication will slow 
– Software implementation will pick up the slack (z > Z)
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Future Trends – Hardware

Processor speed advances not as great as in the past (x << X?)

Computer architects providing multicore machines
– Will require software to utilize these resources
– Not clear if it will contribute more than in the past (y ? Y)

Thus, one of the following will happen
– Overall performance will decline
– Software complexity growth will slow 
– Software implementation will pick up the slack (z > Z)
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Course Outline

1. Background
Why software optimization matters
Myths, terminology, and historical context
How programs are executed

2. Engineering a JIT Compiler

3. Adaptive Optimization

4. Feedback-Directed and Speculative Optimizations

5. Summing Up and Looking Forward
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Well-Known “Facts”

1. Because they execute at runtime, dynamic compilers must be blazingly fast

2. Dynamic class loading is a fundamental roadblock to cross-method 
optimization

3. Sophisticated profiling is too expensive to perform online

4. A static compiler will always produce better code than a dynamic compiler

5. Infrastructure requirements stifle innovation in this field

6. Production VMs avoid complex optimizations, favoring stability over 
performance
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Terminology

Virtual Machine (for this talk): a software execution engine for a 
program written in a machine-independent language

– Ex., Java bytecodes, CLI, Pascal p-code, Smalltalk v-code

Program 
Loader

Thread
Scheduler

Security
Services

LibrariesMemory
Management

Runtime
Support

Mechanisms

Dynamic type checking
Introspection, etc.

Tracing,
Profiling, etc.
(ex. JVMPI)

Interpreter Compiler(s) Adaptive Optimization System

VM != JIT
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Adaptive Optimization Hall of Fame

1958-1962

1974 

1980-1984

1986-1994

1995-present
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Adaptive Optimization Hall of Fame

1958-1962:  LISP

1974: Adaptive Fortran

1980-1984: ParcPlace Smalltalk

1986-1994: Self

1995-present: Java
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Quick History of VMs

LISP Interpreters [McCarthy’78]
– First widely used VM
– Pioneered VM services 

– memory management
– Eval -> dynamic loading

Adaptive Fortran [Hansen’74]
– First in-depth exploration of adaptive optimization
– Selective optimization, models, multiple optimization levels, online 

profiling and control systems



20

IBM Research

ACACES’06 | Dynamic Compilation and Adaptive Optimization in Virtual Machines | July 24-28, 2006 © 2006 IBM Corporation

Quick History of VMs
ParcPlace Smalltalk [Deutsch&Schiffman’84]

– First modern VM
– Introduced full-fledge JIT compiler, inline caches, native code caches
– Demonstrated software-only VMs were viable

Self [Chambers&Ungar’91, Hölzle&Ungar’94]
– Developed many advanced VM techniques 
– Introduced polymorphic inline caches, on-stack replacement, dynamic de-

optimization, advanced selective optimization, type prediction and 
splitting, profile-directed inlining integrated with adaptive recompilation

Java/JVM [Gosling et al. ‘96]
– First VM with mainstream market penetration
– Java vendors embraced and improved Smalltalk and Self technology
– Encouraged VM adoption by others -> CLR
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Featured VMs in this Talk
Self [‘86-’94]

– Self is a pure OO language
– Supports an interactive development environment
– Much of the technology was transferred to Sun’s HotSpot JVM

IBM DK for Java [’95-’06]
– Port of Sun Classic JVM + JIT + GC and synch enhancements 
– Compliant JVM
– World class performance

Jikes RVM (Jalapeño) [’97-]
– VM for Java, written in (mostly) Java
– Independently developed VM + GNU Classpath libs
– Open source, popular with researchers, not a compliant JVM
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Course Outline 

1. Background
Why software optimization matters
Myths, terminology, and historical context
How programs are executed

2. Engineering a JIT Compiler

3. Adaptive Optimization

4. Feedback-Directed and Speculative Optimizations

5. Summing Up and Looking Forward
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How are Programs Executed?

1. Interpretation
– Low startup overhead, but much slower than native code execution

– Popular approach for high-level languages
– Ex., APL, SNOBOL, BCPL, Perl, Python, MATLAB

– Useful for memory-challenged environments

2. Classic just-in-time compilation
– Compile each method to native code on first invocation

– Ex., ParcPlace Smalltalk-80, Self-91
– Initial high (time & space) overhead for each compilation
– Precludes use of sophisticated optimizations (eg. SSA, etc.)

Responsible for many of today’s misconceptions
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Interpretation vs. (Dynamic) Compilation
Example: 500 methods
Assume: Compiler gives 4x speedup, but has 20x overhead

0
20
40
60
80

100
120

Intepreter Compiler

Ti
m

e

Initial Overhead Execution

0
500

1000
1500
2000
2500

Intepreter Compiler
Ti

m
e

Initial Overhead Execution

Execution: 20 time units Execution: 2000 time unitsShort running: Interpreter is best       Long running: compilation is best
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Selective Optimization

Hypothesis: most execution is spent in a small pct. of methods
– 90/10 (or 80/20) rule

Idea: use two execution strategies
1. Unoptimized:  interpreter or non-optimizing compiler
2. Optimized:  Full-fledged optimizing compiler

• Strategy
– Use unoptimized execution initially for all methods
– Profile application to find “hot” subset of methods

– Optimize this subset
– Often many times
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Course Outline 

1. Background

2. Engineering a JIT Compiler
What is a JIT compiler?
Case studies: Jikes RVM, IBM DK for Java, HotSpot
High level language-specific optimizations
VM/JIT interactions

3. Adaptive Optimization

4. Feedback-Directed and Speculative Optimizations

5. Summing Up and Looking Forward
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What is a JIT Compiler?

Code generation component of a virtual machine

Compiles bytecodes to in-memory binary machine code
– Simpler front-end and back-end than traditional compiler

– Not responsible for source-language error reporting
– Doesn’t have to generate object files or relocatable code

Compilation is interspersed with program execution
– Compilation time and space consumption are very important

Compile program incrementally; unit of compilation is a method
– JIT may never see the entire program
– Must modify traditional notions of IPA (Interprocedural Analysis)
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Design Requirements

High performance (of executing application)
– Generate “reasonable” code at “reasonable” compile time costs
– Selective optimization enables multiple design points

Deployed on production servers RAS
– Reliability, Availability, Serviceability
– Facilities for logging and replaying compilation activity

Tension between high performance and RAS requirements
– Especially in the presence of (sampling-based) feedback-directed opts
– So far, a bias to performance at the expense of RAS, but that is changing 

as VM technology matures
– Ogato et al., OOPSLA’06 discuss this issue
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Structure of a JIT Compiler

bytecode

Common
Optimizer

Machine
Dependent

Machine
Dependent

IA32 binary PPC/32 binary

Front-end
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Course Outline - Summary

1. Background

2. Engineering a JIT Compiler
What is a JIT compiler?
Case studies: Jikes RVM, IBM DK for Java, HotSpot
High level language-specific optimizations
VM/JIT interactions

3. Adaptive Optimization

4. Feedback-Directed and Speculative Optimizations

5. Summing Up and Looking Forward
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Case Study 1: Jikes RVM [Fink et al., OOPSLA’02 tutorial]

Java bytecodes IA32, PPC/32

3 levels of Intermediate Representation (IR)
– Register-based; CFG of extended basic blocks
– HIR: operators similar to Java bytecode
– LIR: expands complex operators, exposes runtime system implementation 

details (object model, memory management)
– MIR: target-specific, very close to target instruction set

Multiple optimization levels
– Suite of classical optimizations and some Java-specific optimizations
– Optimizer preserves and exploits Java static types all the way through MIR
– Many optimizations are guided by profile-derived branch probabilities
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Jikes RVM Opt Level 0

On-the-fly (bytecode IR)
– constant, type and non-null propagation, constant folding, branch 

optimizations, field analysis, unreachable code elimination
BURS-based instruction selection
Linear scan register allocation

Inline trivial methods (methods smaller than a calling sequence)
Local redundancy elimination (CSE, loads, exception checks)
Local copy and constant propagation; constant folding
Simple control flow optimizations

– Static splitting, tail recursion elimination, peephole branch opts
Simple code reordering
Scalar replacement of aggregates & short arrays
One pass of global, flow-insensitive copy and constant 
propagation and dead assignment elimination
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Jikes RVM Opt Level 1

Much more aggressive inlining 
– Larger space thresholds, profile-directed
– Speculative CHA (recover via preexistence and OSR)

Runs multiple passes of many level 0 optimizations
More sophisticated code reordering algorithm [Pettis&Hansen]

Over time many optimizations shifted from level 1 to level 0
Aggressive inlining is currently the primary difference between 
level 0 and level 1
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Jikes RVM Opt Level 2

Loop normalization, peeling & unrolling

Scalar SSA
– Constant & type propagation
– Global value numbers
– Global CSE
– Redundant conditional branch elimination

Heap Array SSA
– Load/store elimination
– Global code placement (PRE/LICM)
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Case Study 2: IBM DK [Ishizaki et al. ’03]

Java bytecodes IA32, IA64, PPC/32, PPC/64, S/390

3 Intermediate representations
– Extended bytecodes (compact, but can’t express all transforms)
– Quadruples (register-based IR)
– DAG (quadruples + explicit representation of all dependencies)

Multiple optimization levels

Many optimizations use profile information
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Optimizations on Extended Bytecodes

Java bytecodes + type information
– Compact representation
– Can’t express some transformations

Flow-sensitive type inference (devirtualization)

Method inlining, includes guarded inlining based on CHA

Nullcheck and array bounds check elimination

Flow-sensitive type inference (checkcast/instanceof)
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Optimizations on Quadruples

Quadruples
– Register-based; CFG of extended basic blocks
– Close to native instruction set; some pseudo-operators (e.g. new)

Copy and constant propagation, dead code elimination
Frequency-directed splitting
Escape analysis & scalar replacement
Exception check optimization (partial-PRE)
Type inference (instanceof/checkcast)
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Optimizations on DAG of QUADs

DAG: augment QUADs with explicit dependency edges

SSA-form: loop versioning, induction variable optimizations
Pre-pass instruction scheduling
Instruction selection
Sign extension elimination
Code reordering (move infrequent blocks to end)
Register allocation

– Special-purpose for IA32
– Linear scan other platforms
– Considering graph coloring

Post-pass instruction scheduling
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Effectiveness of Optimizations in IBM DK [Ishizaki, et al. OOPSLA’03]

Generally effective and cheap
– Method inlining for tiny methods
– Exception check elimination via forward dataflow
– Scalar replacement via forward dataflow

Sometimes effective and cheap
– Exception check elimination via PRE
– Elimination of redundant instanceof/checkcast
– Splitting

Occasionally effective, but expensive
– Method inlining of larger methods via static heuristics
– Scalar replacement via escape analysis
– All of their DAG optimizations
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Case Study 3: HotSpot Server JIT [Paleczny et al. ’01]

HotSpot Server compiler
– Client compiler is simpler; small set of opts but faster compile time

Java bytecodes SPARC, IA32

Extensive use of On Stack Replacement
– Supports a variety of speculative optimizations (more later)
– Integral part of JIT’s design

Of the 3 systems, the most like an advanced static optimizer
– SSA-form and heavy optimization
– Design assumes selective optimization (“HotSpot”)
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HotSpot Server JIT

Virtually all optimizations done on SSA-based sea-of-nodes
– Global value numbering, sparse conditional constant propagation,
– Fast/Slow path separation
– Instruction selection
– Global code motion [Click ’95]

Graph coloring register allocation with live range splitting
– Approx 50% of compile time (but much more than just allocation)
– Out-of-SSA transformation, GC maps, OSR support, etc.
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Course Outline

1. Background

2. Engineering a JIT Compiler
What is a JIT compiler?
Case studies: Jikes RVM, IBM DK for Java, HotSpot
High level language-specific optimizations
VM/JIT interactions

3. Adaptive Optimization

4. Feedback-Directed and Speculative Optimizations

5. Summing Up and Looking Forward
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High level language-specific optimizations

Not a consequence of JIT compilation, but of source language

Effective optimization of object-oriented language features is 
essential for high performance

Optimizations
– Type analysis: virtual function calls and typechecks
– Escape analysis, scalar replacement, etc.
– Support for precise exceptions
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Optimizing Virtual Function Calls

Effective inlining is the most important optimization in a JIT
– Many small methods
– Many virtual function calls (target not directly evident)

Iterative Type Analysis [Chambers&Ungar’90]
– Compute for every variable a conservative approximation of the 

runtime types (concrete types) of values stored in that variable
– Gains information from new, checkcast, virtual call, …
– Enables devirtualization (and then inlining)
– Also can be used to eliminate redundant checkcast/instanceof

Type analysis is useful, but often not sufficient
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Speculatively Optimizing Virtual Function Calls

Class Hierarchy Analysis [Dean et al. ’95]
– constrained by potential for dynamic class loading
– guard with class/method test or code patch
– avoid guards with preexistence or OSR

Profile-guided
– guard with class/method test

More details later…



46

IBM Research

ACACES’06 | Dynamic Compilation and Adaptive Optimization in Virtual Machines | July 24-28, 2006 © 2006 IBM Corporation

Optimization of Heap Allocated Objects

“Good” OO programming heavy use of heap allocated objects

Optimizations
– Reduce direct cost of allocating objects

– Inline allocation sequence, thread-local allocation pools
– Stack allocation & scalar replacement of non-escaping objects

– Support advanced GC algorithms (write barriers for generational)
– Deeper analysis of load/stores to the heap

– Eliminate redundant load/stores
– Extend other analyses to cope with dataflow through instance 

variables
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Scalar Replacement
Completely replace all references to an object
Enabled by escape analysis and/or dataflow

class A { 
int x; 
int y;

}
void foo() {

A a = new A();
a.x = 1;
a.y = a.x + 2;
System.out.println(a.y);

}

void foo() {
int t1 = 1;
int t2 = t1 + 2;
System.out.println(t2);

}
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Redundant Load Elimination

Original Program Transformed Program

p  := new Z
q  := new Z
r  := p
. . .
T1 := ...
p.x := T1
q.x := ...
...  := T1

p  := new Z
q  := new Z
r  := p
. . .
p.x := ...

q.x := ...
...  := r.x
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Optimizing with Precise Exceptions

Language semantics require precise exception handling
– Constrains optimizations by limiting legal reorderings of operations 

and may extend the lifetime of variables
– Optimizations must be taught to respect these constraints

– Principled: IR represents all constraints  of exception model
– Kludge: Special logic in every impacted optimization
– Reality: combination of the two approaches

Optimizations to reduce performance impact
– Eliminate redundant exception checks
– Hoist invariant checks; PRE of checks
– Loop peeling and loop versioning to create fast loops for the 

expected case
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Course Outline 

1. Background

2. Engineering a JIT Compiler
What is a JIT compiler?
Case studies: Jikes RVM, IBM DK for Java, HotSpot
High level language-specific optimizations
VM/JIT interactions

3. Adaptive Optimization

4. Feedback-Directed and Speculative Optimizations

5. Summing Up and Looking Forward
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JIT/VM Interactions

Runtime services often require JIT support
– Memory management
– Exception delivery and symbolic debugging

JITed code requires extensive runtime support
– Runtime services such as type checking, allocation
– Common to use hardware traps & signal handlers
– Helper routines for uncommon cases (dynamic linking)

Collaboration enables optimization opportunities
– Inline common case of allocation, type checks, etc.
– Co-design of VM & JIT essential for high performance
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JIT Support for Memory Management

GC Maps
– Required for type-accurate GC to identify roots for collection
– Generated by JIT for every program point where a GC may occur
– Encodes which physical registers and stack locations hold objects
– Can constrain optimizations (derived pointers)

Write barriers for generational collection
– Requires JIT cooperation (barriers inserted in generated code)
– Common case of barriers is usually inlined
– Variety of barrier implementations with different trade-offs

Cooperative scheduling
– In many VMs, all mutator threads must be stopped at GC points. 
– One solution requires JITs to inject GC yieldpoints at regular 

intervals in the generated code
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JIT Support for Other Runtime Services

Exception tables
– Encode try/catch structure in terms of generated machine code.
– Typical implementation in JVM consists of compact meta-data 

generated by the JIT and used when an exception occurs
– no runtime cost when there is no exception

Mapping from machine code to original bytecodes
– Primary usage is for source level debugging, but if the mapping 

exists it can be used to support a variety of other runtime services
– One complication is the encoding of inlining structure to present 

view of virtual call stack
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Runtime Support for JIT Generated Code

Memory allocation
– Occurs frequently, therefore JIT usually inlines common case
– Details of GC implementation often “leak” into the JIT making GC 

harder to maintain and change (some exceptions: Jikes RVM;  LIL 
[Glew et al. VM’04])

Null pointer checks; array bounds check
– Implemented via SIGSEGV and/or trap instructions
– Runtime installs signal handlers to handle traps and create/throw 

appropriate language level exception

JIT generated code relies on extensive set of runtime helper routines
– “Outline” infrequent operations and uncommon cases of frequent 

operations
– Very common place for JIT details to “leak” into the runtime 

system and vice versa. 
– Often use specialized calling conventions for either fast invocation 

or reduced code space
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Advantages of JIT/VM Interdependency

Co-design of JIT/VM can have large performance implications

VM data structures optimized to enable JIT to generate 
effective inline code sequences for common cases.

Example: support for dynamic type checking in JVMs
– Jikes RVM [Alpern et al.’01] and HotSpot [Click&Rose’02]
– Similar ideas, HotSpot extends and improves on Jikes RVM

– exploit compile-time knowledge to customize dynamic type 
checking code sequence

– co-design of VM data structures & inline opt code
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Disadvantages of JIT/VM Interdependency

Leakage of implementation details
– JIT implementation dependent on details VM and vice versa
– Often performance critical code, so complete abstraction is not 

always possible

Maintain JIT/VM interface
– Interface is often fairly wide and not explicitly specified
– Changes require coordination and careful planning

– JIT and VM often owned by different development teams

Hard to build a JIT that can be plugged into multiple VMs
– Can be done, but requires discipline and careful design
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Course Outline 

1. Background

2. Engineering a JIT Compiler

3. Adaptive Optimization
Selective Optimization
Design: profiling and recompilation
Case studies: Jikes RVM and IBM DK for Java
Understanding system behavior
Other issues

4. Feedback-Directed and Speculative Optimizations

5. Summing Up and Looking Forward
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Selective Optimization

Hypothesis: most execution is spent in a small pct. of methods
– 90/10 (or 80/20) rule

Idea: use two execution strategies
1. Unoptimized:  interpreter or non-optimizing compiler
2. Optimized:  Full-fledged optimizing compiler

• Strategy
– Use unoptimized execution initially for all methods
– Profile application to find “hot” subset of methods

– Optimize this subset
– Often many times
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Selective Optimization Examples

Adaptive Fortran: interpreter + 2 compilers

Self’93: non-optimizing + optimizing compilers

JVMs
– Interpreter + compilers: Sun’s HotSpot, IBM DK for Java, IBM’s J9
– Multiple compilers: Jikes RVM, Intel’s Judo/ORP, BEA’s JRockit

CLR
– only 1 runtime compiler, i.e., a classic JIT

– But, also use ahead-of-time (AOT) compilation (NGEN)
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Selective Optimization Effectiveness: 
Jikes RVM, [Arnold et al.,TR Nov’04]
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Selective Optimization Effectiveness: 
Jikes RVM, [Arnold et al.,TR Nov’04]
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Designing an Adaptive Optimization System

What is the system architecture for implementing selective 
optimization?

What is the mechanism (profiling) and policy for driving 
recompilation?

How effective are existing systems?
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Course Outline 

1. Background

2. Engineering a JIT Compiler

3. Adaptive Optimization
Selective optimization
Design: profiling and recompilation
Case studies: Jikes RVM and IBM DK for Java
Understanding system behavior
Other issues

4. Feedback-Directed and Speculative Optimizations

5. Summing Up and Looking Forward
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Profiling: How to Find Candidates for Optimization

Counters

Call Stack Sampling

Combinations
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How to Find Candidates for Optimization: Counters

Insert method-specific counter on method entry and loop back edge
Counts how often a method is called

– approximates how much time is spent in a method
Very popular approach: Self, HotSpot
Issues: overhead for incrementing counter can be significant

– Not present in optimized code

foo ( … ) {
fooCounter++;
if (fooCounter > Threshold) {

recompile( … );
}
. . . 

}
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How to Find Candidates for Optimization: Call Stack Sampling

Periodically record which method(s) are on the call stack
Approximates amount of time spent in each method
Does not necessarily need to be compiled into the code

– Ex. Jikes RVM, JRocket
Issues: timer-based sampling is not deterministic
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How to Find Candidates for Optimization: Call Stack Sampling

Periodically record which method(s) are on the call stack
Approximates amount of time spent in each method
Does not necessarily need to be compiled into the code

– Ex. Jikes RVM, JRocket
Issues: timer-based sampling is not deterministic
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How to Find Candidates for Optimization

Combinations
– Use counters initially and sampling later on
– Ex) IBM DK for Java, J9

foo ( … ) {
fooCounter++;
if (fooCounter > Threshold) {

recompile( … );
}
. . . 

}

A
B
C
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Recompilation Policies: Which Candidates to Optimize?
Problem: given optimization candidates, which ones should be optimized?

Counters
1. Optimize method that surpasses threshold

– Simple, but hard to tune, doesn’t consider context
2. Optimize method on the call stack based on inlining policies (Self, 

HotSpot)
– Addresses context issue

Call Stack Sampling
1. Optimize all methods that are sampled

− Simple, but doesn’t consider frequency of sampled methods
2. Use Cost/benefit model (Jikes RVM)

– Seemingly complicated, but easy to engineer
– Maintenance free
– Naturally supports multiple optimization levels
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Case Studies

Jikes RVM [Arnold et al. ’00]

IBM DK for Java [Suganuma et al. ’01, ‘05]
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Case Study 1: Jikes RVM Architecture [Arnold et al. ’00]

Install New Code
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Jikes RVM: Recompilation Policy – Cost/Benefit Model

Define
– cur, current opt level for method m
– Exe(j), expected future execution time at level j
– Comp(j), compilation cost at opt level j

Choose   j   > cur     that minimizes    Exe(j) + Comp(j)

If    Exe(j) + Comp(j) < Exe(cur)      recompile at level  j

Assumptions
– Sample data determines how long a method has executed
– Method will execute as much in the future as it has in the past
– Compilation cost and speedup are offline averages
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Short-running Programs: Jikes RVM
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Short-running Programs: Jikes RVM
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Steady State: Jikes RVM
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Steady State: Jikes RVM, no FDO (Mar ’04)
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Case Study 2: IBM DK for Java [Suganuma et al. ’01, ‘05]

Execution Levels (excluding Specialization)

MMI (Mixed Mode Interpreter)
–Fast interpreter implemented in 
assembler

Quick compilation
–Reduced set of optimizations for 
fast compilation, little inlining

Full compilation
–Full optimizations only for selected 
hot methods

Methods can progress sequentially 
through the levels

    1st Level
Compiled Code

      2nd Level
Compiled Code

Mixed Mode 
Interpreter

Hot Method
  Sampling

Dynamic Compiler

Profiling System

Quick Opt
Compiler

  Sampling   
Profiler

Full Opt
Compiler

  MMI 
Profiler

ByteCode

Invocation Frequency
Loop Iteration
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Profile Collection

MMI Profiler (Counter Based)
– Invocation frequency and loop iteration

Sampling Profiler
– Lightweight for operating during the entire execution
– Only monitors compiled methods
– Maintains list of hot methods and calling relationships among hot methods

MMI also collects branch frequencies for FDO
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Recompilation Policy

Methods are promoted sequentially through the levels

MMI -> Quick 
– Based on loop and invocation counts with special treatment for certain 

types of loops

Quick -> Full
– Based on sampling profiler
– Roots of call graphs are recompiled with inlining directives 

– Inspired by Self’93
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Startup: IBM DK for Java, no Specialization [Suganuma et al. ’01]
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Steady State: IBM DK for Java, no Specialization [Suganuma et al. ’01]
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But the world is not always simple
Modern programs execute a large number of methods

SPECjappserver, Mark Stoodley (IBM) MRE’05
–executes > 10,000 methods
–No single “hot spot”

–Hottest method may be <1% of total execution time
–90/10 rule may still apply

–But 10% of 10,000 is 1,000 (warm) methods

Eclipse startup, IBM J9 VM
Number of Methods   

Workspace Running
Time Exe. Optimized Highest Level

Empty 5.8 secs 10,499 740  (7.1%) 4 (0.04%)

21 (0.11%)Eclipse 
source

18.2 secs 18,960 2,169 (11.4%)
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Example: Jikes RVM Compilers on AIX/PPC
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Both efficiency and code quality of optimization are relevant
Improving the efficiency of optimization has value
Improving code quality has value

– Even if expensive, can likely be incorporated via selective optimization
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Understanding System Behavior

Code size usage (IBM DK for Java)

Execution time overhead (Jikes RVM)

Recompilation information
– Pct/total methods recompiled (Jikes RVM)
– Activity over time (Both)
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Code Size Comparison, startup: IBM DK for Java
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Code Size Comparison, steady state: IBM DK for Java
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Execution Profile: Jikes RVM (Jul ’02)
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Recomp. Decisions, 20 iterations for each benchmark
Jikes RVM
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Recomp. Decisions, 20 iterations for each benchmark
Jikes RVM
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Recompilation Activity: Jikes RVM (Jul ’02)
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Recompilation Activity (IBM DK for Java)
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Research Issues for Adaptive Optimization (1/2)

Tuning thresholds is a problem
– Threshold values often turn out to be bad later on
– Dealing with combined counter and sample data

Pause times
– Model optimizes throughput, ignores pauses

– After running for an hour, may suggest massive compilations
Synchronous vs. asynchronous recompilation

– Is optimization performed in the background, or is the application 
suspended during compilation?

– Exploit idle CPU’s
– Dozens of compilations in parallel (Azul Systems) 

Static or dynamic view of profile data
– Is profile data packaged or used in flight during compilation?



96

IBM Research

ACACES’06 | Dynamic Compilation and Adaptive Optimization in Virtual Machines | July 24-28, 2006 © 2006 IBM Corporation

Research Issues for Adaptive Optimization (2/2)

Skipping optimization levels
– When to do it?
– Better ways to predict how long method will run?

Handling programs with “flat” profiles
– Use partial method compilation? 

Handling code space
– Do we need to budget recompilation?

Responsiveness of installing new compiled code 
– Stack rewriting, code patching, etc.

Reliability
– Repeatability 
– Counters have advantages, and disadvantages

Can we save information for future runs?
– More details to follow
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Learning From a Previous Run

Q: Why throw away everything a VM has learned just because the 
program has ended?

A: Several approaches exist

Quicksilver [OOPSLA’00]
– Save the compiled code for a subsequent execution
– Issue: need to deal with security issue, phase changes

Krintz & Calder [PLDI’01, CGO’03]
– Add annotation to classfiles for important methods
– Issue: annotations are independent from online recompilation 

strategy
Arnold et al. [OOPSLA’05]

– Details to follow
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Arnold, Welc, Rajan [OOPSLA’05]

JVMs apply compilation at runtime
– Better predictions of method running time allows better use of 

JIT compiler

Database stores method execution patterns from multiple runs
– Optimization strategies constructed based on these patterns

– Read by JVM at startup, if exists

Average startup improvement
8 – 16% depending on execution scenario
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Profile Repository: Histogram of Method Runtimes

For each (hot) method in the program
– Record how much time spent in the method during each program execution
– After each run, update a histogram of run times 
– Example: method Foo

– Ran program 100 times
– In 40 program runs, Foo executed for 5 seconds
– In 60 runs, Foo executed for 50 seconds
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Profile Repository: Histogram of Method Runtimes
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Course Outline

1. Background

2. Engineering a JIT Compiler

3. Adaptive Optimization

4. Feedback-Directed and Speculative Optimizations
Gathering profile information
Exploiting profile information in a JIT

Feedback-directed optimizations
Aggressive speculation and invalidation

Exploiting profile information in a VM

5. Summing Up and Looking Forward
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Feedback-Directed Optimization (FDO)
Exploit information gathered at runtime to optimize execution

– “selective optimization”: what to optimize
– “FDO” : how to optimize

– Similar to offline profile-guided optimization
– Only requires 1 run!

Advantages of FDO [Smith’00]
– Can exploit dynamic information that cannot be inferred statically
– System can change and revert decisions when conditions change
– Runtime binding has advantages

Performed in many systems
– Eg, Jikes RVM, 10% improvement using FDO

– Using basic block frequencies and call edge profiles

Many opportunities to use profile info during various compiler phases
– Almost any heuristic-based decision can be informed by profile data

– Inlining, code layout, multiversioning, register allocation, global 
code motion, exception handling optimizations, loop unrolling, 
speculative stack allocation, software prefetching
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Issues in Gathering Profile Data

1. What data do you collect?

2. How do you collect it?

3. When do you collect it?
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Issue 1: What data do you collect?

What data do you collect? 
– Branch outcomes
– parameter values 
– loads and stores 
– etc.

Overhead issues
– cost to collect, store, and use data
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Issue 2: How do you collect the data?
Program instrumentation

– e.g. basic block counters, value profiling

Sampling [Whaley, JavaGrande’00; Arnold&Sweeney TR’00; Arnold&Grove, CGO’05; Zhuang et al. PLDI’06]

– e.g. sample method running, call stack at context switch 

Hybrid: [Arnold&Ryder, PLDI’01]

– combine sampling and instrumentation

Runtime service monitors
[Deutsch&Schiffman, POPL’84,Hölzle et al., ECOOP’91; Kawachiya et al., OOPSLA’02; Jones&Lins’96]

– e.g. dispatch tables, synchronization services, GC

Hardware performance monitors: [Ammons et al. PLDI’97; Adl-Tabatabai et al., PLDI’04]

– e.g. drive selective optimization, suggest locality improvements
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Issue 3: When do you collect the data?

When do you collect the data?
– During different execution modes (interpreter or JIT)

– e.g. Profile branches during interpetation
– e.g. Add instrumentation during execution of JITed

code

– During different application phases (early, steady state, 
etc.)

– Profile during initial execution to use during steady 
state execution

– Profile during steady state to predict steady state

Issues: overhead vs accuracy of profile data
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Common Approaches in VMs

Most VMs perform profiling during initial execution 
(interpretation or initial compiler)

– Easy to implement
– Low-overhead (compared to unoptimized code)
– Typically branch profiles are gathered
– Leads to nontrivial FDO improvements

– 10% for Jikes RVM

Call stack sampling can be used for optimized code
– Low overhead
– Limited profile information

Some VMs also profile optimized methods using instrumentation
– Leverages selective optimization strategy
– Challenge is to keep overhead low (see next 2 slides)
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IBM DK Profiler [Suganuma et al ’01,’02]
Sampling

– Used to identify already compiled methods for re-optimization
Dynamic instrumentation

1. Patch entry to a method with jump to instrumented version
2. Run until threshold

– Time bound
– Desired quantity of data collected

3. Undo patch

sub esp, 50
mov [esp-50], ebx
mov [esp-50], ebx
mov [esp-50], ebx

B’s compiled codeB’s
Instrumented

code
jmp instr_code
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Arnold-Ryder [PLDI 01]: Full Duplication Profiling

F u ll -D u p l ic a t io n  F r a m e w o r k

D u p l ic a te d  C o d eC h e c k in g  C o d e

M e th o d  E n try

C h e c k s

E n tr y
B a c k e d g e s

C h e c k
P la c e m e n t

No patching; instead generate two copies of a method
•Execute “fast path” most of the time
•Jump to “slow path” occasionally to collect profile
•Demonstrated low overhead, high accuracy
•Used by J9 and other researchers



110

IBM Research

ACACES’06 | Dynamic Compilation and Adaptive Optimization in Virtual Machines | July 24-28, 2006 © 2006 IBM Corporation

Course Outline

1. Background

2. Engineering a JIT Compiler

3. Adaptive Optimization

4. Feedback-Directed and Speculative Optimizations
Gathering profile information
Exploiting profile information in a JIT

Feedback-directed optimizations (“3a”)
Aggressive speculation and invalidation (“3b”)

Exploiting profile information in a VM

5. Summing Up and Looking Forward
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Types of Optimization

1. Ahead of time optimization
– It is never incorrect, prove for every execution

2. Runtime static optimization
– Will not require invalidation

Ex. inlining of final or static methods

3. Speculative optimizations
Profile, speculate, invalidate if needed
Two flavors:
a) True now, but may change

Ex. class hierarchy analysis-based inlining
b) True most of the time, but not always

Ex. speculative inlining with invalidation mechanisms

Current systems perform 2 & 3a, but not much of 3b
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Common FDO Techniques

Compiler optimizations
– Inlining
– Code Layout
– Multiversioning
– Potpourri

Runtime system optimizations
– Caching
– Speculative meta-data representations
– GC Acceleration
– Locality optimizations
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Fully Automatic Profile-Directed Inlining
Example: SELF-93 [Hölzle&Ungar’94]

– Profile-directed inlining integrated with sampling-based 
recompilation

– When sampling counter triggered, crawl up call stack to find “root”
method of inline sequence

A
7

300

B

C
900

D
1000

•D trips counter threshold
•Crawl up stack, examine counters
•Recompile B and inline C and D
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Fully Automatic Profile-Directed Inlining

Example: IBM DK for Java [Suganuma et al. ‘02]

Always inline “tiny” methods (e.g. getters)
Use dynamic instrumentation to collect call site distribution

– Determine the most frequently called sites in “hot” methods
Constructs partial dynamic call graph of “hot” call edges
Inlining database to avoid performance perturbation

Experimental conclusion
– use static heuristics only for small size methods
– inline medium- and bigger only based on profile data



115

IBM Research

ACACES’06 | Dynamic Compilation and Adaptive Optimization in Virtual Machines | July 24-28, 2006 © 2006 IBM Corporation

Inlining Trials in SELF [Dean and Chambers 94]

Problem: Estimating inlining effect on optimization is hard 
– May be desirable to customize inlining heuristic based on data flow effect

Solution: “Empirical” optimization

Compiler tentatively inlines a call site
Subsequently monitors compiler transformations to quantify effect on 
optimization
Future inlining decisions based on past effects



116

IBM Research

ACACES’06 | Dynamic Compilation and Adaptive Optimization in Virtual Machines | July 24-28, 2006 © 2006 IBM Corporation

Code positioning
Archetype: Pettis and Hansen [PLDI 90]
Easy and profitable: employed in most (all?) production VMs
Synergy with trace scheduling [eg. Star-JIT/ORP]

A
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Multiversioning

Compiler generates multiple implementations of a code 
sequence

– Emits code to choose best implementation at runtime

Static Multiversioning
– All possible implementations generated beforehand
– Can be done by static compiler
– FDO: Often driven by profile-data

Dynamic Multiversioning
– Multiple implementations generated on-the-fly 
– Requires runtime code generation
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Static Multiversioning Example
Guarded inlining for a virtual method w/ dynamic test
Profile data indicates mostly monomorphic call sites
Note that downstream merge pollutes forward dataflow

If (dispatch 
target is foo’)

inlined foo’ invokevirtual fooinvokevirtual foo
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Static Multiversioning with On-Stack Replacement [SELF, HotSpot, Jikes RVM]

Guarded inlining for a virtual method w/ patch point & OSR
– Patch no-op when class hierarchy changes
– Generate recovery code at runtime (more later)

No downstream merge -> better forward dataflow

No-op

inlined foo’ Trigger OSRinvokevirtual foo
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Dynamic Multiversioning: Customization in SELF

Generate new compiled version of a method for each possible receiver 
class on first invocation with that receiver

Mostly targeted to eliminating virtual dispatch overhead
– Know precise type for ‘self’ (this) when compiling

Works well for small programs, scalability problems
– Naïve approach eventually abandoned
– Selective profile-guided algorithm later developed in Vortex [Dean et al. ‘95]
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IBM DK for Java with FDO [Suganuma et al. ’01]

    1s t L eve l
C o m p iled  C o d e

      2n d  L eve l
C o m p iled  C o d e

M ixed  M o d e  
In terp re te r

H o t M eth o d
  S am p lin g

D e ta iled  V a lu e
    S a m p lin g

    3 rd  L eve l
C o m p iled  C o d e

D yn am ic  C o m p ile r

P ro filin g  S ys te m

Q u ick  O p t
C o m p ile r

  S am p lin g    
P ro file r

In stru m en tin g
P ro file r

F u ll O p t
C o m p ile r

S p ec ia l O p t
C o m p ile r

  M M I 
P ro file r

B yteC o d e

In vo c a tio n  F re q u en c y
L o o p  Ite ra tio n

MMI (Mixed Mode Interpreter)
– Fast interpreter implemented in assembler 

Quick compilation
– Reduced set of optimizations

Full compilation
– Full optimizations for selected hot methods

Special compilation
– Code specialization based on value profiling
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Specialization: IBM DK [Suganuma et al. ‘01]

For hot methods, compiler performs 
“impact analysis” to evaluate potential 
specializations

–Parameters and statics

For desirable specializations, compiler 
dynamically installs instrumentation for 
value profiling

Based on value profile, compiler 
estimates if specialization is profitable 
and generates specialized versions

Process can iterate

       Full Opt
Compiled Code

Install / Deinstall

  Sampling
   Profiler

Recompilation Request
    (w/ specialization)

Hot Method
Sampling Data

Code Generation

Instrumentation
          Code

Specialization  
Planning

Instrumentation
Planning

  
Controller

Code Generation

Impact  
Analysis

   Full Opt
  Compiler  

Database

  Instrumenting
        Profiler
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Impact Analysis
Problem: When is specialization profitable?

Impact analysis: Compute estimate of code quality improvement if we knew 
a specific value or type for some variables

– Constant Value of Primitive Type
– Constant Folding, Strength Reduction (div, fp transcendental)
– Elimination of Conditional Branches, Switch Statements

– Exact Object Type
– Removal of Unnecessary Type Checking Operations
– CHA Precision Improvement -> Inlining Opportunity

– Length of Array Object
– Elimination or Simplification of Bound Check Operations
– Loop Simplification

Dataflow algorithm

For each possible specialization target (variable), compute how many 
statements could be eliminated or simplified
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Steady State: IBM DK for Java + FDO/Specialization 
[Suganuma et al.’01]
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FDO Potpourri
Many opportunities to use profile info during various compiler phases
Almost any heuristic-based decision can be informed by profile data

Examples:
Loop unrolling 

– Unroll “hot” loops only
Register allocation 

– Spill in “cold” paths first
Global code motion

– Move computation from hot to cold blocks
Exception handling optimizations

– Avoid expensive runtime handlers for frequent exceptional flow
Speculative stack allocation

– Stack allocate objects that escape only on cold paths
Software prefetching

– Profile data guides placement of prefetch instructions
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Course Outline

1. Background

2. Engineering a JIT Compiler

3. Adaptive Optimization

4. Feedback-Directed and Speculative Optimizations
Gathering profile information
Exploiting profile information in a JIT

Feedback-directed optimizations
Aggressive speculation and invalidation

Exploiting profile information in a VM

5. Summing Up and Looking Forward
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Example:  Class hierarchy based inlining
longRunningMethod ( ) {

Foo foo = getSomeObject();
foo.bar();

}

According to current class hierarchy
– Only one possible virtual target for foo.bar()
– Idea:  speculate that class loading won’t occur

– Inline Foo::bar()
– Monitor class loading: if Foo::bar() is overridden 

– Recompile all methods containing incorrect code

– But what if longRunningMethod never exits?
– One option:  on-stack replacement
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Invalidation via On-Stack Replacement (OSR)
[Chambers,Hölzle&Ungar’91-94, Fink&Qian’03]

Transfer execution from compiled code m1 to compiled code m2
even while m1 runs on some thread's stack

Extremely general mechanism minimal restrictions on speculation

stack

PC

frame

m2

m2

stack

PC

frame

m1

m1
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OSR Mechanisms
•Extract compiler-independent state from a suspended activation for m1
•Generate new code m2 for the suspended activation
•Transfer execution to the new code m2

m2

stack

PC

frame

m1

m1

compiler-
independent
state

stack

PC

frame
m2

m22 31
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OSR and Inlining
Suppose optimizer inlines A B C:

A'

stack

PC

frame
A

A

21 3

JVM Scope
Descriptor

A

JVM Scope
Descriptor

C

JVM Scope
Descriptor

B
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Applications of OSR
1. Safe invalidation for speculative optimization

– Class-hierarchy-based inlining [HotSpot]
– Deferred compilation [SELF-91, HotSpot, Whaley 2001] 

– Don't compile uncommon cases
– Improve dataflow optimization and reduce compile-time

2. Debug optimized code via dynamic deoptimization [Holzle et al. ‘92]
– At breakpoint, deoptimize activation to recover program state

3. Runtime optimization of long-running activations [SELF-93]
– Promote long-running loops to higher optimization level

Unoptimized Optimized Speculative
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Invalidation Discussion
OSR challenges

– Nontrivial to engineer
– Code that is both complex and infrequently executed is a prime 

location for bugs
– Keeping around extra state may introduce overhead

Other existing invalidation techniques
– Pre-existence inlining [Detlefs&Agesen’99]
– Code patching [Suganama’02]
– Thin Guards [Arnold&Ryder’02]

Once invalidation mechanism exists
– Relatively easy to perform speculative optimizations
– Many researchers avoid interprocedural analysis of Java for the wrong 

reasons
– Invalidation is “easy”.  The fun parts are

– Must be able to detect when assumptions change
– Must be low overhead, incremental

– Area mostly unexplored   (Hirzel et al.,’04)
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Invalidation via pre-existence [Detlefs & Agesen’99]

When applicable, enables all of the benefits of OSR, without the
complexities of a full OSR implementation.

int foo(A a) {
......
a.m1();

}

Key insight: if inlining m1 without a runtime guard is valid when foo is 
invoked, it will be valid when the inlined code executes

– Exploiting “pre-existence” of object reference by a 

Invalidation is required only for all future invocations
– No interrupted activations a la OSR
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Dynamic Class Hierarchy Mutation [Su and Lipasti, 06]

Idea: 
– Find methods with control flow dependent on some “state” field 
– Create specialized methods for the different values
– Use virtual function dispatch

Implementation
– Offline

– Finds hot methods with control dependent on states whose 
value is set in cold methods

– Capture values and distribution of states (using sampling)
– Online

– JVM  specializes hot methods with hot values by dispatching to 
the specialized method at runtime

– Tracks assignments of hot fields (for opportunities and 
invalidation)

– Modifies virtual function table to specialized 
implementation

– Incorporated into an existing adaptive optimization system
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Dynamic Class Hierarchy Mutation [Su and Lipasti, ’06]

Results 
Benchmarks: SPECjbb2000, SPECjbb2005, 4 other programs

2 to ~8% performance improvement
– author-created benchmark shows over 30% improvement

~1.5—7% code size increase

~2-17% compilation time increase

Assessment
Interesting idea

Specialization regions are limited to methods (uses virtual 
dispatch), but system creates these methods

How do you do this online?
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Runtime Specialization With Optimistic Heap Analysis 
[Shankar et al., OOPSLA’05]

Online technique, first to track heap variables
Motivation: specialization of “interpreter” programs 

Algorithm
1. Find a specialization starting point in a hot function

2. Specialize: create a trace for each hot value k
– Loops unrolled, branch prediction for nonconstant conditionals
– Eliminate loads from invariant memory locations
– Eliminates safety checks, dynamic dispatch, etc. 
– Modify dispatch to select appropriate trace

3. Invalidate when assumed invariant locations are updated
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Finding Specialization Points

The best point can be near the end of the function

Ideally: try to specialize from all instructions
– Pick the best one, as defined by “Influence”
– Influence(e) = Expected number of dynamic instructions from the 

first occurrence of epc to the end of the function
– Dataflow-independent

System of equations, solved in linear time
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Finding Invariant Memory Locations
Provides the bulk of the speedup
Existing work relied on static analysis or annotations
Solution: sampled invariance profiling

– Track every nth store
– Locations detected as written: not constant
– Everything else: optimistically assumed constant

95.6% of claimed constants remained constant

Use Arnold-Ryder duplication-based sampling to gather other useful info
– CFG edge execution frequencies

– Helps identify good trace start points (influence)
– Hot values at particular program points

– Helps seed the constant propagator with initial values
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Invalidation

Because heap analysis is optimistic
– Need to guard assumed constant locations 
– And invalidate corresponding traces

Solution to the two key problems
– Detect when such a location is updated

– Use write barriers (type information eliminates most barriers) 
– Overhead: 0-12% 

– Invalidate corresponding specialized traces
– A bit tricky: trace may need to be invalidated while executing
– Uses OSR
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Results
Benchmark Input Speedup

fixed image, various matrices 2.74x

fixed matrix, various images 1.23x

dotproduct
Converted from C version in DyC sparse constant vector 5.17x

bubblesort bytecodes 5.96x

binary search bytecodes 6.44x

jscheme
Interprets Scheme code partial evaluator 1.82x

query
Performs a database query; from DyC semi-invariant query 1.71x

sim8085
Intel 8085 Microprocessor simulator included sample program 1.70x

em3d (intentionally unspecializable)
Electromagnetic wave propagation -n 10000 -d 100 0.98x

interpreter
Interprets simple bytecodes

convolve
Transforms an image with a matrix; from the ImageJ 
toolkit
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Runtime Specialization With Optimistic Heap Analysis 
[Shankar et al., OOPSLA’05]

Assessment
– Completely online, usable in a JVM

– More optimistic approach

– Effective on interpreter programs
– What about general commercial applications?
– Need to overcome overhead

– Current state of the art in online specialization
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Course Outline

1. Background

2. Engineering a JIT Compiler

3. Adaptive Optimization

4. Feedback-Directed and Speculative Optimizations
Gathering profile information
Exploiting profile information in a JIT

Feedback-directed optimizations
Aggressive speculation and invalidation

Exploiting profile information in a VM
– Dispatch optimizations
– Speculative object models
– GC and locality optimizations

5. Summing Up and Looking Forward
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Virtual/Interface Dispatch

Polymorphic inline cache [Holzle et al.‘91]

receiver = …
call PIC stub

Update PIC and
Dispatch to correct

receiver

if type = rectangle
jump to method

if type = circle
jump to method

call lookup

Rectangle code…

…

PIC stub

Circle code

Calling code

Requires limited dynamic code generation
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Speculative Meta-data Representations
Example: Object models

Tri-state hash code encoding [Bacon et al. ‘98, Agesen Sun EVM]

Can also elide lockword [Bacon et al.‘02]

00 10 01

Unhashed Hashed
(hashcode == address)

hashcode

Hashed 
and Moved

lockword

hashcode

lockword

0

No synchronized
method

Has synchronized
method

No synchronized
method, but locked
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Adaptive GC techniques

Dynamically adjust heap size
– IBM DK [Dimpsey et al. ‘00] – policy depends on heap utilization and 

fraction of time spent in GC

Switch GC algorithms to adjust to application behavior
– [Printezis ‘01] – switch between Mark&Sweep and Mark&Compact 

for mature space in generational collector
– [Soman et al.’03] – more radical approach prototyped in Jikes RVM
– Not yet exploited in production VMs

Opportunistic GC
– [Hayes’91] – key objects keep large data structures live
– Not yet exploited in production VMs
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Spatial Locality Optimizations 

Move objects, change objects to increase locality, or prefetch 

Field reordering

Object splitting

Object co-location
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Spatial Locality Optimizations 

Examples
– Kistler & Franz ’00
– Chilimbi et al., ’99
– Huang et al. ’04
– Adl-Tabatabai et al. ’04
– Chilimbi & Shahan ’06
– Siegwart & Hirzel ’06
– Etc.

Very hot area
Encouraging results, some with offline profiling, some online
Example of getting hardware and VM to work better together
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Course Outline

1. Background

2. Engineering a JIT Compiler

3. Adaptive Optimization

4. Feedback-Directed and Speculative Optimizations

5. Summing Up and Looking Forward
Debunking myths
The three waves of adaptive optimization
Future directions
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Debunked Myths

1. Because they execute at runtime, dynamic compilers must be blazingly fast

2. Dynamic class loading is a fundamental roadblock to cross-method 
optimization

3. Sophisticated profiling is too expensive to perform online

4. A static compiler will always produce better code than a dynamic compiler

5. Infrastructure requirements stifle innovation in this field

6. Production VMs avoid complex optimizations, favoring stability over 
performance
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Myths Revisited I

Myth: Because they execute at runtime dynamic compilers must be 
blazingly fast. 

– they cannot perform sophisticated optimizations, such as SSA, 
graph-coloring register allocation, etc.

Reality:
– Production JITs perform all the classical optimizations
– Language-specific JITs exploit type information not available to C 

compilers (or ‘classic’ multi-language backend optimizers)
– Selective optimization strategies successfully focus compilation

effort where needed
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Myths Revisited II

Myth: Dynamic class loading is a fundamental roadblock to cross-
method optimization:

– Because you never have the whole program, you cannot perform 
interprocedural optimizations such as virtual method resolution,
virtual inlining, escape analysis

Reality:
– Can speculatively optimize with respect to current class hierarchy
– Sophisticated invalidation technology well-understood; mitigates 

need for overly conservative assumptions
– Speculative optimization can be more aggressive than conservative, 

static compilation
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Myths Revisited III

Myth: Sophisticated profiling is too expensive to perform online

Reality:
– Sampling-based profiling is cheap and can collect sophisticated information
– e.g.  Arnold-Ryder full-duplication framework
– e.g.  IBM DK dynamic instrumentation
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Myths Revisited IV

Myth: A static compiler can always get better performance than a dynamic 
compiler because it can use an unlimited amount of analysis time.

Reality:
– Production JITs can implement all the classical optimizations static 

compilers do
– Feedback-directed optimization should be more effective than 

unlimited IPA without profile information
– Legacy C compiler backends can’t exploit type information and 

other semantics that JITs routinely optimize
– However, ahead-of-time compilation still needed sometimes:

– Fast startup of large interactive apps
– Small footprint (e.g. embedded) devices

– Incorporating ahead-of-time compilation into full-fledged VM is 
well-understood
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Myths Revisited V

Myth: Small independent academic research group cannot afford 
infrastructure investment to innovate in this field

Reality:
– High-quality open-source virtual machines are available

– Jikes RVM, ORP, Kaffe, Mono, etc.
– Apache Harmony looks interesting
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Myth VI - Production VMs avoid complex optimizations, 
favoring stability over performance

Perception: Complex, speculative optimizations introduce hard to 
find bugs and are not worth the marginal performance returns.

Reality:  There is pressure to obtain high performance
– Production JVMs perform many complex optimizations, including

– Optimizations that require sophisticated coding
– Difficult to debug dynamic behavior

– e.g., nondeterministic profile-guided optimizations
– Speculative optimizations involving runtime invalidation

– Production JVM’s are leading the field in VM performance
– Often ahead of academic and industrial research labs
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This does not mean there are no problems

Commercial VMs do dynamic, cutting-edge optimizations, but..
– Complexity of VMs keeps growing 

– Layer upon layer of optimizations with potential unknown interactions
– Often:

– Solutions may not be the most general or robust
– Targeted to observed performance problems

– Not evaluated with the usual scientific rigor
– Not published

– See performance “surprises” on new applications

There are many research issues that academic researchers could help 
explore:  

– Performance, robustness, and stability
– Would really help the commercial folks
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How much performance gain is interesting?

Quiz: An optimization needs to produce > X% performance 
improvement to be considered interesting.   X = ?

– a) 1%  b) 5%  c) 10%  d) 20%
– Sometimes research papers with < 5-10% improvement are labeled failures

Answer: it depends on complexity of the solution
– Value = performance gain / complexity
– Every line of code requires maintenance, and is a possible bug

– 10 LOC yielding 1.5% speedup
– Product team may incorporate in VM by end of week

– 25,000 LOC yielding 1.5% speedup:   
– Not worth the complexity

Improving performance with reduced complexity is important 
– Needs to be rewarded by program committees 
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Comparison Between HLL VMs and Dynamic Binary Optimizers

HLL VM
Applies to programs in target languages

Exploits program structure and high-level 
semantics (e.g. types)

Large gains from runtime optimization 
(10X vs. interpreter)

Most effective optimizations: inlining, 
register allocation

Optimizer usually expensive, employed 
selectively

Dynamic Binary Optimizer
Applies to any program

Views stream of executed instructions, 
can infer limited program structure and 
low-level semantics
Smaller gains from runtime optimization 
(10% would be good?)

Most effective optimizations: instruction 
scheduling, code placement

Optimizer usually cheap, often employed 
ubiquitously

Trends suggest that more programs will be written to managed HLLs
– For such programs, does binary optimizer add value?

Chen et al [CGO’06] combine both



159

IBM Research

ACACES’06 | Dynamic Compilation and Adaptive Optimization in Virtual Machines | July 24-28, 2006 © 2006 IBM Corporation

Waves of Adaptive Optimization

1. Use JIT to compile all methods (Smalltalk-80)

2. Selective Optimization (Adaptive Fortran, Self-93)
– Use many JIT levels to tradeoff cost/benefits of various optimizations
– Exploit 80-20 rule
– limits the costs of runtime compilation

3. Online FDO (Today’s JVMs)
– Use profile information of current run to improve optimization accuracy
– exploits benefit of runtime compilation

4. What is the next wave?
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The 4th Wave of Adaptive Optimization?
Try multiple optimization strategies for a code region, online

Run and time all versions online

Determine which performs the best

Use it in the future

Examples
– Dynamic Feedback [Diniz & Rinard, ’97]

– Measure synchronization overhead of each version
– ADAPT [Voss & Eigenmann ’01]

– Uses fastest executed version after partitioning timings into bins
– Fursin et al. ’05

– Measure two versions after a stable period of execution is entered 
– Performance Auditor [Lau et al. ’06]

– More details to follow
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Performance Auditor

Per-Method speedups
Aggressive inlining vs. default inlining (J9 JVM, 100 hot methods)

Aggressive inlining: mixed results
More slowdowns than speedups
But not a total loss – there are significant speedups!
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Wishful Thinking

Dream: A world without slowdowns
Default inlining heuristics miss these opportunities to improve performance
Goal: Be aggressive only when it produces speedup
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Challenge

Which implementation is fastest? 
– Decide online, without stopping and restarting the program

Can’t just invoke each version once and compare times
– Changing inputs, global state, etc

Example: Sorting routine. Size of input determines run 
time

– SortVersionA(10 entries) vs SortVersionB(1,000,000 entries) 
– Invocation timings don’t reflect performance of A and B

– Unless we know that input size correlates with runtime 
– But that requires high-level understanding of program behavior

Solution: Collect multiple timing samples for each version
– Use statistics to determine how many samples to collect
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Timing Infrastructure Design

Entrance of 
Code Region

Stop timer
Record timing

. . .
Code Region 

Version A
Code Region 

Version A

Randomly choose
a version

Start timer

Code Region 
Version B

Code Region 
Version B

Code Region 
Version N

Code Region 
Version N
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Results
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Results



167

IBM Research

ACACES’06 | Dynamic Compilation and Adaptive Optimization in Virtual Machines | July 24-28, 2006 © 2006 IBM Corporation

Per-Method Accuracy
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No shortage of research problems for virtual machines (1/2)
Higher-level optimizations

– General purpose components, using tiny fraction of functionality
– Higher-level programming models (e.g. J2EE, XML, Web Services, BPEL)

Traditional optimizations, but for non-”toy” benchmarks
– Selective optimization for programs with 30,000 methods
– Inlining for call stack > 200 deep

More aggressive use of speculation
– Dynamic compiler looks too much like traditional static compilers

Stability of performance
– Too many ad-hoc optimizations based on (poorly tuned) heuristics
– React to phase shifts
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No shortage of research problems for virtual machines (2/2)
Optimizations for locality

– New challenges and opportunities in managed runtimes

Online interprocedural analysis 
– Mostly unexplored
– Take a more global view of optimization 

How to exploit new hardware designs 
– Multicore, hardware performance monitors

Resource-constrained devices (space, power …)

Reducing complexity
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Future Directions
Better synergy with other levels of virtualization

– App server, OS, low level virtualization
– Eg. Hertz et al. ‘05

– Extend garbage collector to be aware of paging
– One level of indirection is clever, is > 1 redundancy?

Better synergy with hardware 
– ISA is another level of virtualization!

– Eg. Adl-Tabatabai et al. ‘04
– Uses HW perf counter to drive prefetching optimization

Additional focus on real-time performance, security, and reliability
– Realtime eg: Bacon et al. [POPL’03, EMSOFT’05]

Virtual machines for “static” languages, such as C, Fortran, etc. 
[Stoodley, CGO’06 Keynote]
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Concluding Thoughts

SE demands and processor frequency scaling issues require software 
optimization to deliver performance

Virtual machines are here to stay
– Independent of popular language of the day

Dynamic languages require dynamic optimization
– An opportunity for “dynamic” thinkers

In many cases industrial practice is ahead of published research

Still plenty of open problems to solve

How can we encourage VM awareness in universities?
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Additional Information – details on my web page

3-day Future of Virtual Execution Environments 
Workshop, Sept’04

– 32 experts, hosted by IBM
– Slides and video for most talk and discussion are available

VEE Conference
– VEE’07 will be co-located with FCRC/PLDI’07, June 13-15, 

San Diego
– Submission Deadline: Feb 5, 2007
– General Chair: Chandra Krintz (UCSB)
– Co-program chairs:  Steve Hand (Cambridge), Dave Tarditi 

(Microsoft)
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