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Abstract

Register allocation is a long-standing research topic of computer science that has been
studied extensively over the last decades. Its goal is to map a theoretically infinite number
of program variables onto a finite, small set of CPU registers during compilation. Even
though caches try to bridge the gap between register and memory access time, keeping as
many values in registers as long as possible is crucial for good performance. Hence register
allocation is still considered to be one of the most important compiler optimizations.

The present diploma thesis describes the process of implementing a register allocator
for TCC, a small single-pass C compiler written in C1. While TCC is very fast (up to a
magnitude faster than gcc -O0 for the x86 architecture), it produces code that is quite
inefficient – some naive kind of register allocation is done only on the basis of statements.
Our goal of implementing register allocation done on the basis of whole functions, that is,
global register allocation, should hence result in a notable performance increase.

As prerequesite for register allocation in TCC, a proper IR (Intermediate Represen-
tation) needs to be generated in a first pass. On top of this internal representation, live
variable analysis, register allocation and finally the code generation is then performed. We
determine the variable live intervals with an extraordinarily simple approach that avoids
the usual costly data-flow analysis techniques – it trades off the accuracy of the calculated
intervals for higher execution speed. For the register allocation we use Linear Scan, a strat-
egy that doesn’t abstract the problem to graph coloring, but rather takes a simple approach
involving the linear traversal of variable live intervals. While linear scan is very fast, it
is stated that the generated code is almost as efficient as with graph coloring, making it a
popular choice for JIT compilers.

As target machine, ARM, a classical RISC architecture, now widespread especially in
mobile phones and in many other embedded systems, is chosen. Since data processing
operands must not reside in memory in this Load/Store architecture, register allocation is
even more important.

We determine the performance gain with various test applications, predominantly from
the benchmark suite MiBench. Additionally, we compare compile-time as well as run-time
performance with the widespread compiler gcc.

The execution time speedup of code generated by our implementation is about 32% on
average (compared to the original TCC), while the compile-time is increased only marginally
and is still an order of magnitude lower than for gcc without any optimization. Conse-
quently, our register allocator implementation is an attractive trade-off for dynamic code
generation with TCC.

1of course, TCC itself can also be compiled with TCC
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Kurzfassung

Registerzuteilung (engl. register allocation) ist eines der ältesten Forschungsthemen
in der Informatik, welches im Laufe der letzten Jahrzehnte ausgiebig untersucht wurde.
Das Ziel besteht darin, bei der Übersetzung von Programmen eine theoretisch unendliche
Anzahl an Programmvariablen einer endlichen, kleinen Menge an verfügbaren Prozessor-
Registern zuzuordnen. Auch wenn mit Hilfe von Caches die Kluft zwischen Register- und
Speicherzugriffszeit überbrückt wird, so ist es doch wichtig, so viele Werte wie möglich so
lange wie möglich in Registern zu halten, um eine gute Leistung zu erzielen. Somit wird
Registerzuteilung nach wie vor als eine der wichtigsten Compileroptimierungen angesehen.

Die vorliegende Diplomarbeit beschreibt den Vorgang der Implementierung eines Reg-
isterallokators für TCC, einem kleinen Ein-Pass C-Compiler, der selbst auch in C geschrieben
ist2. TCC ist sehr schnell (bis zu zehnmal schneller als gcc -O0 für die x86-Architektur),
erzeugt jedoch sehr ineffizienten Code – eine sehr einfache Art der Registerzuteilung wird
nur auf Basis von Anweisungen gemacht. Unser Ziel, Registerzuweisung auf Basis von
ganzen Funktionen zu implementieren (d.h. einen globalen Registerallokator), sollte somit
einen deutlichen Geschwindigkeitszuwachs bringen.

Als Voraussetzung für einen Registerallokator in TCC muss ein passender Zwischen-
code (engl. IR, Intermediate Representation) in einem ersten Durchlauf erzeugt werden.
Auf Basis dieser internen Repräsentation können dann die Lebensdaueranalyse der Vari-
ablen, Registerzuteilung und letztendlich die Codeerzeugung durchgeführt werden. Wir
bestimmen die Lebensdauerintervalle der Variablen mit einem außergewöhnlich einfachen
Algorithmus, der die üblichen Techniken der Datenflussanalyse vermeidet – die Genauigkeit
der ermittelten Intervalle wird zugunsten einer höheren Ausführungsgeschwindigkeit geopfert.
Für die Registerzuteilung benutzen wir Linear Scan, eine Strategie welche das Problem
nicht auf Graphenfärbung reduziert, sondern mit einer sehr einfachen Vorgangsweise ar-
beitet, welche lediglich einen sequentiellen Durchlauf von den aktiven Intervallen (engl.
live intervals) der Variablen benötigt. Obwohl die Strategie sehr schnell ist, wird angegeben
dass der erzeugte Code beinahe so effizient ist wie jener von Graphenfärbungs-Algorithmen.
Aufgrund dieser Tatsache ist Linear Scan sehr beliebt für JIT Compiler.

Als Zielarchitektur wird ARM gewählt, eine klassische RISC-Architektur, die mittler-
weile weitverbreitet in Mobiltelefonen als auch in vielen anderen eingebetteten Systemen
ist. Da in dieser Load/Store-Architektur die Operanden bei Datenverarbeitungsoperationen
nicht im Speicher liegen dürfen, ist Registerzuteilung hier besonders wichtig.

Wir ermitteln den Geschwindigkeitszuwachs der Implementierung mit verschieden-
sten Testprogrammen, die vorwiegend von der Benchmark-Sammlung MiBench stammen.
Zusätzlich vergleichen wir sowohl die Übersetzungs-Zeit- als auch die Laufzeit-Leistung
mit dem weitverbreiteten Compiler gcc.

Unsere Implementierung erzeugt Code der im Durchschnitt um ca. 32% schneller ist
(verglichen mit dem originalen TCC), wobei sich die Übersetzungs-Zeit nur marginal erhöht
und immer noch über zehn Mal niedriger ist als für gcc ohne jegliche Optimierung. Somit
ist unsere Implementierung des Registerallokators ein guter Kompromiss für dynamische
Codeerzeugung mit TCC.

2natürlich lässt sich TCC auch mit TCC kompilieren
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CHAPTER 1
Introduction

Compilers usually have the two main goals of generating correct and fast code. For dynamic
code generators however, compile-time speed can be even an more important factor than run-
time speed. TCC is a C-compiler which is very fast and well-suited for dynamic code generation,
but it creates fairly inefficient code. By extending TCC with a register allocation phase, the code
quality can be increased significantly with only a marginal loss of the high compilation speed.

1.1 Register Allocation

Due to the gap between register and memory access time in computers, one of the fundamental,
obvious rules for writing efficient programs is to take advantage of the register set as much as
possible. Processing data in main memory can be up to three magnitudes slower than directly
on the CPU-near register set. The advent of data caches sped up operations on memory on aver-
age, but the rule still holds and bad register utilization can make drastic differences in program
performance.

However, nowadays programs are rarely written in assembly language anymore, but higher-
level languages are used where the programmer doesn’t have control about the register set.
Hence this is now the task of the compiler, called register allocation. That optimization phase is
responsible for assigning a theoretically unbounded number of program variables to a bounded
number of physical registers. If the number of active variables exceeds the available registers,
registers need to be spilled, i.e. stored to a dedicated memory location, usually the stack.

Register allocation is considered to be a very central optimization, and virtually every widespread
compiler nowadays implements it. Hennessy and Patterson state in their famous standard work
about computer architecture the following:

“Because of the central role that register allocation plays, both in speeding up
the code and in making other optimizations useful, it is one of the most important –
if not the most important – optimizations.”1

1[HP90]

1



CHAPTER 1. INTRODUCTION 2

Register allocation strategies are divided into local and global, where local algorithms see
basic blocks as the basic unit, and global ones aim at performing register allocation over whole
functions.

The traditional solution of globally approaching the register allocation problem is to reduce
it to a graph coloring problem, but alternative strategies also exist. This is described in more
detail in the next chapter.

1.2 TCC – The Tiny C Compiler

TCC, short for Tiny C Compiler (also called TinyCC) is a small C compiler written by Fabrice
Bellard2. While the first versions targeted only the x86 architecture, support for x86-64, ARM
and TMS320C67 was added over the years by various contributors.

TCC has a number of interesting properties that distinguish it from other C compilers:

• Speed: TCC is a single-pass compiler that directly generates binary code “on the fly”,
without relying on any external tools, not even an assembler. This makes it obviously
very fast – a compilation speed test for the Links Browser project3 found that TCC is about
nine times faster than gcc on the x86 architecture, where the time includes assembly and
linking. For the ARM architecture, we observed a speedup factor of even 12 and above
(see chapter 9).

• Size: TCC is very small. For example, the x86 TCC executable needs about 100kB. This,
together with the speed factor, makes it an interesting option to use it on systems with
limited resources, e.g. rescue disks or embedded systems.

• Scripting support: Provided with the -run switch on the command line, TCC directly
compiles, assembles and links the given C files into memory and executes it. This enables
the creation of command line scripts in C.

• Dynamic code generation: With libtcc, the core library of the compiler, TCC can
be used as backend for dynamic code generation. By simply passing C code strings to a
library function, it can be compiled and then run at runtime. There also exist bindings to
enable scripting languages to access libtcc, for example Luatcc for Lua4.

TCC implements all of the ANSI C (C89/C90) standard and supports, apart from complex
and imaginary numbers and variable length arrays, also the newer C99 standard5. Additionally,
it also supports some GNU extensions and provides inline assembly support for x86.

The project is distributed under the GNU Lesser General Public License (LGPL). Currently
it is maintained with the version-control system git; the repository can be received via the com-
mand git clone git://repo.or.cz/tinycc.git. An online version of it, including
instructions on how to supply patches, is found on http://repo.or.cz/w/tinycc.git.

2see http://bellard.org/tcc/
3see http://links.twibright.com/
4see http://piratery.net/luatcc/
5see the TCC reference documentation http://bellard.org/tcc/tcc-doc.html

http://repo.or.cz/w/tinycc.git
http://bellard.org/tcc/
http://links.twibright.com/
http://piratery.net/luatcc/
http://bellard.org/tcc/tcc-doc.html
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1.3 ARM Architecture

ARM is a popular 32-bit RISC architecture that is mostly known for its use in mobile phones.
The simple instruction set with fixed-size encoding, the relatively large uniform register set
(15 general purpose registers) and simple addressing modes (Load/Store architecture) make it a
pleasant choice for code generation.

Since ARM is especially widespread in use in embedded domains, our hope is to make TCC
an attractive option for those systems. We develop the implementation on the Raspberry Pi
(see Appendix B), a credit-card sized home computer that surely could profit from having an
improved TCC, as fast alternative to gcc that still generates efficient code.

1.4 Goal

The obvious drawback of TCC is that with the current code generation method, it is unable to
generate optimized code. Hence an additional pass must be generated that allows the manipu-
lation of intermediate code for global register allocation. On top of this IR, data-flow analysis,
register allocation and finally code generation can then be implemented.

We have two conflicting goals on the implementation: While the quality of the generated
code in terms of speed should clearly increase, TCC should still retain its notable property of
high-speed compilation.

1.5 Source Code

The source code of the implementation is version-controlled with Git and can be found on Bit-
Bucket (⇒ https://bitbucket.org/theStack/tccls_poc.git). It was started
with the latest official version 0.9.26 of TCC as basis, and we also applied all changes from the
“mob” branch 6 up to July 24th, 2013.

1.6 Outline

Chapter 2 gives an overview of register allocation strategies, predominantly graph coloring algo-
rithms and linear scan. New research work in this field that has been done within the last decade,
like register allocation for SSA-programs is also covered shortly.

Chapter 3 describes how the implementation of TCC works, with a focus on those parts that
we need to modify for our register allocator. Several important decisions (choice of register
allocation algorithm and target architecture) and simplifying restrictions are established in chap-
ter 4. It also contains a short introduction on the development environment, the Raspberry Pi,
and gives an outline on the implementation plan.

The base of our implementation, the generation of an IR (intermediate representation) that
abstracts variable accesses with virtual registers, is described in chapter 5. The next step, the

6mob branches have the special property that everyone can push changes to it without authentication, similar to
the concept of Wikipedia; see http://repo.or.cz/h/mob.html for more informations

https://bitbucket.org/theStack/tccls_poc.git
http://repo.or.cz/h/mob.html
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variable live interval calculation, is covered in chapter 6. Chapter 7 describes the mapping
of virtual registers to physical registers, that is, the global register allocation with linear scan.
Finally, chapter 8 covers the important aspect of generating the target code out of the register-
allocated IR. This includes generating spill code.

Measurements of compile-time and run-time efficiency, compared to other compilers, are
presented in chapter 9.

Chapter 10 concludes the thesis and gives some ideas on how the implementation could be
further improved in the future.

Appendix A covers the ARM architecture, including the Procedure Call Standard (ARM
EABI) that plays an important role for the register allocation. Appendix B lists details about our
target machine, the Raspberry Pi. Appendix C contains relevant code snippets of our implemen-
tation.



CHAPTER 2
Register Allocation and Related Work

2.1 Motivation

An important criterion for the code generating part of an optimizing compiler is where the in-
struction operands (this is, predominantly, program variables and temporary values) should be
stored: in memory or in registers? Obviously, due to the nature of the memory hierarchy [HP90],
register access is much faster than memory access.

Even if we assumed that all instructions take the same amount of time, keeping values in
registers can be beneficial in terms of instruction count. On typical Load/Store architectures
like ARM, all instruction operands for ALU operations must be registers. Hence for every
modification of a variable that is stored in memory (that is, spilled), an extra load and store
instruction pair is needed.1 If we take as example a simple increment of a variable on a RISC
machine, this needs three instruction if the variable in memory versus one if it is kept in a
register, as shown in Table 2.1.

operand in memory location n operand in register r
t← mem[n] (load)
t← t + 1 r← r + 1
t→ mem[n] (store)

Table 2.1: Instructions for the simple assignment x := x + 1 depending on the storage

The register file on common architectures is still quite limited: ARM has 15 general purpose
registers available (see Appendix A), while the dominating architecture for desktop computers,
x86, even only has as few as eight register available. A subset of the register set is usually
reserved for special purposes (e.g. stack pointer, frame pointer, return address) and can’t be
used for holding values of variables or temporaries. Hence the decision on which program value

1note that there exist architectures like x86 where memory operands are possible at least in some instructions

5
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resides in a register is even more crucial for improving the performance by minimizing the
spilling instructions.

2.2 Subproblems of Register Allocation

The problem of register allocation actually implies three subproblems:

• What values in a program should reside in registers, what values should be stored in
memory? (spilling)2

• In which register should each value reside? (register assignment)

• Given two non-interfering variables A and B that are related by an assignment (A = B),
should we map them to the same register? (coalescing)

For optimal register allocation all of those subproblems have to be taken into account efficiently,
which is still an open problem. For example, most early approaches were concentrated too much
on assigning and spilling, ignoring the influence of a good coalescing strategy.

2.3 Register Allocation Scope

There are generally different approaches to register allocation, depending on the scope of the
variables it is applied on. The original TCC uses some simple register allocation only based on
expressions, which is very ineffective, as we will show in section 3.8. Usually the allocation is
performed on a larger variable scope to minimize the amount of spilling instructions, with the
following two main approaches:

• Local register allocation: based on the scope of basic blocks (that is, instruction se-
quences with only one entry and exit points each)

• Global register allocation: based on the scope of whole procedures, therefore also called
intraprocedural register allocation

As third category there also exists interprocedural register allocation, which aims to find
a register mapping over the “whole program” scope. To the knowledge of the author, though
various research papers have appeared about this within the last two decades [WG92, KF96], no
common compiler exists that implements this strategy.

This thesis is focussed solely on global register allocation, which is nowadays the most
widespread approach in industrial compilers.

2in early research prior to graph coloring approaches, the term register allocation addressed only this subprob-
lem [ASU86]
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2.4 Liveness Analysis – Preliminary

As a preliminary step for any register allocation algorithm, the compiler needs to find out which
variables are live at the same time. This process called liveness analysis is essential, because
then the values are not allowed to be assigned to the same register. Research papers about
register allocation usually don’t discuss liveness analysis, but rather assume that this information
is already given. A simplified liveness analysis for our implementation, suitable as input for the
linear scan algorithm, is described in chapter 6.

The following algorithms described are all independent of any platform and only assume
that we have K uniform physical registers available that can be used.

2.5 Graph Coloring

One fundamental discovery for an efficient solution to global register allocation was its con-
nection to the mathematical problem of graph coloring. This has first been recognized by John
Cocke3 in the early 70s [AC71], but the first implementation was not until ten years later by
Chaitin (see below).

With the information gathered by liveness analysis, the compiler can construct an undirected
graph in which every vertex represents a unique variable, and edges between vertices mean that
the lifespan of the two variables overlap.

Consider the intermediate code skeleton in Figure 2.1, involving five variables A to E.

1 A = ...
2 B = ...
3 C = ...
4 ... = A
5 ... = B
6 D = ...
7 E = ...
8 ... = D
9 ... = E

10 ... = C

Figure 2.1: IR code

A

B

C

D

E

Figure 2.2: Interference Graph

Figure 2.2 shows the so-called interference graph corresponding to the IR code to its left.
The problem of register allocation can now be approached byK-coloring this graph, where each
color represents one physical register. Two vertices sharing an edge may not not be assigned the
same color. Figure 2.3 shows a possible coloring for our example, assuming we have three
registers available (K = 3). The substitued IR code is shown in Figure 2.4.

There are situations where a coloring is not possible, because the number of variables that
are live at the same time is larger than K (theoretically it can be unbounded). In this case, some
registers need to be spilled, that is, moved to memory. As the intermediate code changes by the

3often called “the father of RISC architecture”
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A1

B2

C3

D1

E2

Figure 2.3: Colored Interference Graph
(K = 3)

1 R1 = ...
2 R2 = ...
3 R3 = ...
4 ... = R1
5 ... = R2
6 R1 = ...
7 R2 = ...
8 ... = R1
9 ... = R2

10 ... = R3

Figure 2.4: IR code with virtual registers
substituted by physical registers

insertion of spill code, the graph needs to be rebuilt and the process repeats, until the graph is
K-colorable (in other words: its chromatic number is ≤ K) and no more spills are needed.

The general scheme for graph-coloring-based register allocation is shown in Figure 2.5.

Build graph Color

Spill

start

if graph not K-colorable

finish

Figure 2.5: Steps in register allocation based on graph coloring

Since the problem of determining whether an arbitrary graph G is n-colorable is NP-complete
(for n > 2), so is register allocation4, and heuristic techniques have to be used to search for a
coloring.

Chaitin

The first global register allocator based on graph coloring was designed by G.J. Chaitin [CAC+81]
in the course of implementing a PL/I compiler for the IBM System/370. It is commonly called
the “Yorktown allocator”, as the working place was in Yorktown Heights.

In Chaitin’s first approach, the spilling was done randomly when the graph was not K-
colorable. In a later paper from 1982 [Cha82], smarter heuristics were introduced (a spill cost

4Proof sketch:
Chaitin showed that given an arbitrary graph, a program can be created with this exact interference graph [CAC+81].
Hence, if we could solve register allocation, we could also color any graph (polynomial reduction). As a result,
register allocation is NP-complete.
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phase), when the allocator was implemented in the PL.8 compiler for the IBM 801 RISC system.
The register allocation scheme is shown in figure 2.6.

Renumber Build Coalesce Spill cost

Spill

Simplify Select
start finish

Figure 2.6: Register allocation scheme of Chaitin’s Yorktown allocator

The coloring procedure was based on Kempe’s algorithm (from 1879). The idea is that given
a graph G that contains a vertex v with degree < K, the graph is K-colorable if G without the
node v is K-colorable. Knowing that, we can iterately remove nodes with a degree < K and
push them on a stack (this is the simplify stage). If this doesn’t work (e.g. there are no nodes
with degree< K), a node has to be removed, actual spill code is inserted and we start again over
with the graph building stage. If the empty graph is reached in the simplify stage we know that
the graph can be K-colored and are finished: each vertex is popped again from the stack and
colored (this is the select stage).

Between building and coloring the graph, nodes are coalesced whenever possible. This
aggessive coalescing policy turned out to be a problem later, when the SSA-form arrived and
the large number of temporaries that got coalesced led to huge live ranges. Those would often
interfere with too many variables, introducing many spills.

Chaitin/Briggs

Preston Briggs improved on the Yorktown allocator in 1992 in the course of his PhD the-
sis [Bri92]. The main contribution was a better graph coloring heuristic that could produce
more efficient code by saving many spills.

The register allocation scheme for the optimistic “Chaitin/Briggs” approach is shown in
figure 2.7. This looks quite similar to the original approach, with the only difference that the

Renumber Build Coalesce Spill cost

Spill

Simplify Select
start finish

Figure 2.7: Register allocation scheme of Brigg’s improved allocator

back-edge representing the spill code insertion occurs one step later, namely at the select phase
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instead of the simplify phase. Instead of failing as soon as a node has degree ≥ K, it is just left
and the allocator continues with the hope to color it later, when it is popped back from the stack.
Then only in the select phase, if a node can’t be colored, it is spilled and the graph is rebuilt.

It turned out that the method can color more graphs. Briggs also introduced the conservative
coalescing strategy which should solve the problem of the too aggressive coalescing used in the
original allocator. However, this was again too conservative.

Iterated Register Coalescing

While earlier papers on register allocation algorithms based on graph coloring were primarily
focused on coloring heuristics, the research community started to notice that good coalescing
strategies are equally important. Too aggressive coalescing strategies (like Chaitin’s) can make
graphs uncolorable, introducing spills which could be avoided, while too conservative strategies
(like Brigg’s) leave too many move instructions in the code.

Appel and George’s “Iterated Register Coalescing” algorithm [GA96] published in 1996
extends Brigg’s allocation scheme with a coalescing strategy that is safe but still aggressive.
By interleaving Chaitin’s simplification steps and Brigg’s conservatice coalescing, much more
move instructions can be eliminated, without introducing too many spills.

It is a standard algorithm for implementing new register allocations, especially in the re-
search community, and every new register allocation scheme is compared to it.

2.6 Recent Research involving SSA and Chordal Graphs

Recent research on graph-coloring-based register allocation has been published that targets on
programs internally stored in SSA (static single assignment) form, which is the standard repre-
sentation for modern compilers.

In SSA form, each variable is assigned only once. For variables that depend on program
flow, special so called φ-nodes are created. Before register allocation, those abstract nodes are
substituted by concrete move instructions. Note that this leads to a large number of temporary
variables, making a good coalescing strategy even more important.

Around 2005, different research groups showed that interference graphs of programs in SSA
form are always chordal [HG06]. A graph is said to be chordal if every cycle of a length at least
4 has a cycle chord, which is an edge that connects two non-adjacent vertices of the cycle.5

Chordal graphs have many interesting properties, the most important one concerning register
allocation being that chordal graphs can be colored optimally in linear time. An obvious idea is
to transform programs into SSA form (in polynomial time), applying register allocation on it, and
then applying the classical SSA elimination to do register allocation in overall polynomial time.
However, this approach doesn’t work since this elimination breaks the coloring and there is no
possibility to make use of the SSA form to get polynomial coloring, as shown by Pereira [PP06].
Hence, register allocation after classical SSA elimination is also NP-complete.

Pereira and Palsberg proposed a simple algorithm which takes advantage of the useful prop-
erties of chordal graphs [PP05]. The technique is not relying on SSA form, but is based on the

5see http://mathworld.wolfram.com/ChordalGraph.html for examples

http://mathworld.wolfram.com/ChordalGraph.html
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observation that a very high percentage of functions have chordal interference graphs (95% of
the methods for the Java 1.5 standard library). The idea is to perform optimally if the function
has a chordal graph with a greedy coloring, and perform well otherwise. Contrary to other graph
coloring algorithms, it is non-iterative. The authors claim that the algorithm is competitive to
iterated register coalescing, and can even outperform it for settings with few registers.

2.7 Linear Scan

A completely different approach to register allocation called Linear Scan was presented in the
late nineties by Poletto and Sarkar [PS99].6 It doesn’t use graph coloring, but rather tackles the
problem by using a greedy algorithm for assigning colors to an ordered sequence of intervals, in
linear-time.

This approach was actually not entirely new, but is closely related to the bin packing register
allocation that evolved during the work of the production quality compiler-compiler project
(PQCC) at Carnegie Mellon University [LCH+80], led by William Wulf. His Bliss/11 compiler
implements the register allocation phase in the TNBIND module which treats registers as bins
with one valid value at any point [WJW+75]. The constraint is that overlapping live ranges can
not be assigned to the same bin. If there is no bin left for a register allocation candidate, the one
with the lowest cost (determined by a special heuristic based on lifetime – candidates distributed
over a large span are generally less important) is decided to be spilled. This method was also
used later in the GEM optimizing compiler (see the “second-chance binpacking” refinement
below).

Linear Scan got very popular within the last decades and is used many real world compilers
such as LLVM7 or the Java HotSpot client compiler.

Description with Example

Prerequisites: instruction numbering and live intervals

Linear scan assumes all instruction in the intermediate representation to be numbered according
to some order. In the original paper they assume depth-first ordering, while the possibility of
numbering the instruction simply as how they appear in the IR is also mentioned8.

A central notion for linear scan is the live interval: [i, j] is said to be a live interval for
variable/value v if there is no instruction with number j′ > j such that v is live at j′, and there
is no instruction with number i′ < i such that v is live at i′. Note that this is a conservative
approximation of the usual live ranges, since there could be intervals within [i, j] in which v is
not live.

6The term “linear scan” was originally coined in an earlier paper about a dynamic code generation called tcc
[PEK97] which implements the “Tick-C” programming language. Note that while also named “tcc”, this a different
compiler than the one covered in this thesis.

7since the release of version 3.0 of LLVM in 2011, the default allocator is a new greedy register
allocator (see http://blog.llvm.org/2011/09/greedy-register-allocation-in-llvm-30.
html), but linear scan can still be enabled

8this approach is used in our implementation, see chapter 5

http://blog.llvm.org/2011/09/greedy-register-allocation-in-llvm-30.html
http://blog.llvm.org/2011/09/greedy-register-allocation-in-llvm-30.html
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Algorithm 1 Linear Scan Register Allocation
1: procedure LSRA(Intervals) . Intervals is sorted in order of increasing starting points
2: Active← {}
3: for LI ∈ Intervals do . traverse list of live intervals
4: EXPIREOLDINTERVALS(LI)
5: if |Active| = K then . all registers are used, we have to spill
6: SPILLATINTERVAL(LI)
7: else . still registers available, register can be assigned
8: LIregister ← REGISTERPOOLGET()
9: Active← Active ∪ LI

10: end if
11: end for
12: end procedure

13: procedure EXPIREOLDINTERVALS(CurrentInterval)
14: for LI ∈ Active do . traverse list of active intervals
15: if LIendpoint ≥ CurrentIntervalstartpoint then
16: return . no old intervals anymore
17: end if
18: Active← Active \ LI . expire old interval and release register
19: REGISTERPOOLADD(LIregister)
20: end for
21: end procedure

22: procedure SPILLATINTERVAL(Interval)
23: Spill← Activelast . spilling heuristic: widest distance of endpoint
24: if Spillendpoint > Intervalendpoint then . interval Spill is spilled
25: Intervalregister ← Spillregister
26: Spilllocation ←NEWSTACKLOCATION()
27: Active← (Active \ Spill) ∪ Interval
28: else
29: Intervallocation ←NEWSTACKLOCATION() . passed interval is spilled
30: end if
31: end procedure

Algorithm

In a first step, with the information from liveness analysis, live intervals are computed. Those
are stored in a list that is sorted in order of increasing starting points. The linear traversal of this
list is the outer skeleton of the linear scan method, as shown in Algorithm 1.

The central data structure is the active list, which contains the live intervals that overlap at
the current point. The list is kept sorted in order of increasing end points and is empty at the
beginning of the algorithm.
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At each iteration of the live intervals, the following simple steps happen (lines 4–10):

1. Expiring of old live intervals (ExpireOldIntervals()):
The list of active intervals is scanned. All active intervals where the endpoints precede
the current interval’s starting point are not overlapping and thus not relevant anymore,
they are “expired”. This leads to their removal from the active list and the corresponding
register is marked as free again. Note that the traversal of the active list can be aborted as
soon as an endpoint is behind the current interval’s starting point, since the active list is
sorted in order of increasing end points.

2. Register assignment (else-branch):
If no spilling is needed (see step below), we can choose a register from the pool and assign
it to the current interval. It is added to the active list as well.

3. Spilling (if-branch, SpillAtInterval()):
The length of the active list shows how many registers are already used. If it is already as
large as the number of available registers K, we don’t have a register left for the current
interval, and one interval must be spilled. While there are several heuristics for choosing
a live interval to spill, the one in the paper is simple: it takes the interval that ends last,
furthest away from the current point.

Example

Consider again the IR code example from Figure 2.1. Liveness analysis (which is trivial for this
straight-code example) yields the following live intervals:

A← [1, 4], B ← [2, 5], C ← [3, 10], D ← [6, 8], E ← [7, 9]

To show how linear scan handles spilling, we assume that the number of available physical
registers K = 2. Note that the intervals are already listed in order of increasing starting points.
The following steps happen in each iteration of the linear scan traversal loop:

1. Interval A: no intervals expired, Areg ← R1, Active← {A}

2. Interval B: no intervals expired, Breg ← R2, Active← {A,B}

3. Interval C: no intervals expired, spilling needed since |Active| = |K|
C is spilled since its endpoint is larger than the endpoints ofA andB; Active unchanged

4. Interval D: A and B are expired and get removed from the Active set,
registers R1 and R2 are available again, Dreg ← R1, Active← {D}

5. Interval E: no intervals expired, Ereg ← R2, Active← {D,E}
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Conclusion

If V denotes the number of canditates for register allocation (that is, variables or temporary
values, respectively live intervals), the algorithm takes O(V ) time – K is bounded and assumed
to be constant and hence doesn’t influence the complexity.

There are two obvious advantages of linear scan over graph coloring approaches that make
it an attractive choice: its simplicity, leading to comparatively low implementation effort, and
the high compile-time speed (see also section 4.1). The latter is especially important for JIT
compilers and dynamic compilation systems.

The drawback of linear scan is the quality of the generated code. Since live ranges are ap-
proximated and lifetime holes are not recognized, often many spills are unnecessarily generated.

The original paper argues that while linear scan is significantly faster than graph coloring
(which even holds for fast graph coloring allocators that don’t perform coalescing), the generated
code is still efficient and only about 10% worse [PS99]. To our knowledge, there is no up to date
research study that compares linear scan to other register allocation algorithms to verify this for
state-of-the-art implementations and architectures.

Refinements

Second-chance binpacking

An improved, more complex variant of linear scan is called second-chance binpacking [THS98].
It is based on the bin packing approach used in the GEM optimizing compiler by the Digital
Equipment Corporation [BCD+92]. By keeping track of the register allocation candidate’s live
range holes (e.g. intervals during which no useful values are maintained) the register file can be
better used and hence less spills are needed. Another notable difference to linear scan is that the
algorithm performs register allocation and instruction rewriting in a single pass. This enables
spilled allocation candidates to have multiple chance to reside in registers during their lifetimes,
hence the name.

The improvements result in a notable increase of compile-time. The original paper on linear
scan compares to second-chance binpacking and suggests that there is only a marginal increase in
performance of the produced code, while the allocation time almost doubles up for the presented
benchmarks [PS99].

Extended Linear Scan

In 2007, Sarkar and Barik proposed two alternative algorithms based on linear scan called “Ex-
tended Linear Scan” [SB07]. As motivation, the authors show that graph coloring, the de facto
standard foundation for global register allocation, introduces unnecessary constraints and has
some theoretical limitations. The basic extended linear scan algorithm (called ELS0) overcomes
those limitations and based on that, a further extension of the basic algorithm (called ELS1) is
presented. The former solves the problem for spill free register allocation (SFRA), while the
latter covers register allocation with total spills (RATS), meaning that whole lifetime intervals
are spilled.
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Experimental results for a number of SPECint2000 benchmarks compare graph coloring
with ELS1 and show that the compile-time speedups were significant (like for the original linear
scan), while the resulting execution time also improved by 2.3% on average.

Linear scan for SSA form

Using linear scan on an IR which is in SSA form has several benefits, as pointed out by Wimmer
and Franz [WF10]: first, for the calculation of the liveness intervals, no iterative data flow anal-
ysis is needed, since SSA form implies that there is only one definition for each variable. Sec-
ondly, tests on intersecting intervals during compilation can be omitted because non-intersection
is already guaranteed by SSA form as well. Thirdly, the obligatory SSA deconstruction after
register allocation can be integrated into the resolution phase.

Those advantages lead to both a lower compilation time as well as to a simpler implementa-
tion. The algorithm was implemented for the Java HotSpot client compiler, with the result that
the compile-time time was decreased by 4% to 8% while the run-time was about equal, in one
case even slightly better.

2.8 Other Approaches

Apart from the two major register allocation strategies, that is, graph coloring and linear scan,
there have been proposed various other interesting and promising approaches within the last two
decades [Pro09, Per08]:

• Integer Linear Programming: At this approach, the register allocation problem is mod-
eled as constraints in a system of integer linear equations. Those equations, representing
the interactions between registers and variables, can then be solved with well-known, op-
timized ILP solvers9.

The idea was first brought up in 1996 by Goodwin and Wilken [GW96], where they used
0-1-integer programming (a subclass of the integer linear programming model) for the
formulation of the problem. While this solution produced very efficient code, it was too
slow for practical use – it could take hours to find an optimal solution. The reason for
this is the fact that integer linear programming is NP-complete, leading to a worst-case
exponential running time.

To improve the ILP-based register allocation, Appel and George separated the phases
between spilling and register assignment [AG01]. In a first step, the ILP solver finds the
optimal solution to the question which variables should be kept in registers and which
variables are spilled. For the remaining subproblems of coloring and coalescing, various
solutions have been proposed so far, since the “optimal coalescing challenge”10 has been
published in 2000.

9for example, lp_solve, see http://sourceforge.net/projects/lpsolve/
10see http://www.cs.princeton.edu/~appel/coalesce

http://sourceforge.net/projects/lpsolve/
http://www.cs.princeton.edu/~appel/coalesce
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Shortly after this, George and Appel themselves had found a solution called optimal co-
alescing, where they again use integer linear programming to model coloring and co-
alescing. The reasearch was heavily focussed on architectures with few registers, pre-
dominantly the x86 architecture, where only six registers can be used for variables and
temporaries. In practice the solution is, despite its name, not optimal and still too slow.

In 2006, Hack and Grund found a solution giving optimal results using a cutting-plane
algorithm [GH07], which in turn again uses integer linear programming. It is faster than
the approach from George and Appel – in cases where register allocation takes too long,
the authors suggest to halt the computation and fall back to a more usual solver that doesn’t
take forever.

Though ILP-based register allocation is a very interesting approach with some advantages,
it is still much slower than traditional approaches and is not implemented in industrial
compilers yet.

• PBQP: The Partitioned Boolean Quadratic Problem (PBQP) belongs to the class of Quadratic
Assignment Problems (QAP) and is a generalization of the graph coloring problem. PBQP
is NP-complete, but a subclass of these problems can be solved in polynomial time.

The goal is to find a function of minimal cost, which is controlled by two sets of terms: the
cost of asssigning one variable x to another variable y (measured by a local cost function
l(x, y)), and the cost given by the interactions between two variables, that is, assigning x
to y and z to a (measured by a related cost function r(x, z, y, a)).

The algorithm by Scholz and Eckstein [SE02] solves in O(nm3), where n is the number
of variables and m is the maximum size of any domain. The complexity of PBQP in
regards of register allocation is O(|V |K3), where |V | is the number of variables in the
source program.

• Puzzle-solving: The problem of register assignment is analogous to solving a collection of
puzzles, as shown by Pereira in 2008 [QaPP08]. The register file is modeled as a puzzle
board and and the program variables as puzzle pieces. This approach takes linear time
for a large number of architectures (including x86, PowerPC and StrongARM) and can
match with widespread register allocators (e.g. the extended version of linear scan used
by LLVM) both in regards of compile-time and run-time of the generated code.



CHAPTER 3
TCC Internals

The following sections describes the inner workings of TCC, with emphasis on the parts that
are relevant for our extension. The informations apply to TCC version 0.9.26, the latest stable
release (released in February 2013) at the time of writing.

3.1 Overview and Features

Most modern compilers are constructed with the aid of generators for certain well-defined stages
that can be described with appropriate formal languages, e.g. regular expressions for lexical
analysis, context-free grammars for syntax analysis (examples of such generators include the
prominent lex/yacc1 duet). TCC goes the classical way in form of a single-pass compiler and
implements all the stages "by hand".

TCC also doesn’t rely on any external tools during run-time. Preprocessing is interweaved
with lexical analysis (whereas gcc relies on cpp, the C preprocessor tool), an assembler is not
needed since target code is output directly in binary format (whereas gcc relies on as, the GNU
assembler), and even linking (whereas gcc relies on ld, the GNU linker).

Hence, TCC is purely self-contained. This property as well as the obvious speed gain makes
it an interesting option for interpreting C code. 2

Scripting support

When started with the -run switch, TCC compiles the program into memory and directly starts
it from there. In this way, C scripts can be easily provided in Linux systems similar to shell
scripts by simply preceding the file with the she-bang “#!/usr/local/bin/tcc -run”
and setting the executable bit.

1called flex/bison by now
2since the whole code snippet is compiled at once before execution, it is in a strict sense not an interpreter, but

rather a load-run compiler

17
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With this mechanism, simple tasks can even be formulated as one-liners in the shell. Some-
times it would be comfortable to quickly try out how some small code snippets, e.g. calls to
library functions, behave without the obligatory “save, compile and execute” cycle. This is pos-
sible with TCC by providing the -run switch and reading from stdin by putting the dash as
“input file”, for example:

$ echo ’int main() { printf("%d", time(0)); }’ | tcc -run -
1397324291

Dynamic code generation

With the library libtcc, C code can be dynamically compiled and executed at runtime. The
idea is to pass a single string containing the code to the library which compiles the code and
stores it to the desired location, either memory or file system.

The following listing shows a minimum, pretty self-explanatory example of how to achieve
this for a single trivial function adding two numbers (passed in line 13):

1 #include <stdlib.h>
2 #include "libtcc.h"
3

4 int main(int argc, char *argv[])
5 {
6 TCCState *s;
7 int size;
8 void* mem;
9 int (*func)(int, int);

10

11 s = tcc_new();
12 tcc_set_output_type(s, TCC_OUTPUT_MEMORY);
13 tcc_compile_string(s, "int foo(int x, int y) { return x+y; }");
14 size = tcc_relocate(s, NULL);
15 mem = malloc(size);
16 tcc_relocate(s, mem);
17 func = tcc_get_symbol(s, "foo");
18

19 printf("23 + 42 = %d\n", func(23, 42));
20 }

3.2 Overview of Modules and Phases

TCC consists of the following modules:

• tcc.c: entry point, evaluates command-line arguments

• libtcc.c: directs the compilation process, provides interface for dynamic code gener-
ation
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category lexeme token notes
literal 1423 TOK_CINT literal value in tokc.i
operator ++ TOK_INC
keyword for TOK_FOR
operator ( ’(’
identifier foo n ≥ TOK_UIDENT every identifier has unique token number
keyword if TOK_IF
literal "bar" TOK_STR literal value in tokc.cstr
operator -> TOK_ARROW

Table 3.1: Examples of some tokens in TCC

• tccgen.c: the core of the compiler, implements the top-down parser which directs the
translation process

• tccpp.c: implements preprocessor and lexer

• [Arch.]-gen.c: low-level code generator for the specific architecture (arm-gen.c for
ARM architecture)

• tccelf.c: routines for generating ELF files (object files, executable files or dynamic
libraries)

• tccrun.c: support for the -run switch

TCC is a single-pass compiler, meaning that it doesn’t create any form of intermediate rep-
resentation of the code. In most compilers nowadays the parser usually emits either an AST
(abstract syntax tree) or some intermediate language that is passed as input to the next phase.
The TCC parser however directly emits object code when parsing expressions by calling the low
level code generations functions, hence there is no separate code generation phase. This is the
main reason why TCC compiles so extraordinarily fast.

3.3 Lexical Analysis

The lexer is implemented in tccpp.c. It is accessed repeatedly by the parser through the
procedure next(), which places the next token into the integer variable tok. For some tokens,
tokc contains additional infos, e.g. values for literals.

Basic token values are defined in the header file tcc.h. Table 3.1 lists some examples of to-
kens returned by the lexer for certain lexemes. Note that in case of single character lexems (such
as parantheses, commas or basic math operations), the token value equals this exact character
value. Identifiers get unique token numbers greater or equal than TOK_UIDENT.
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3.4 Syntax Analysis

Syntax analysis in TCC is performed with recursive-descent parsing, a special form of top-
down parsing where no backtracking is needed [ASU86]. Every non-terminal is associated with
a recursive procedure that recognizes exactly that non-terminal in the input by implementing the
corresponding production rule. Terminal symbols are directly matched and for non-terminals,
the associated procedure is called.

This very simple approach is surprisingly effective and has been proposed and consistently
used by compiler construction pioneer Niklaus Wirth [Wir96, BGP00], e.g. for the languages
Pascal and Oberon.

The parser is started by fetching the first token and calling the procedure that is associated
with the start symbol. In TCC, this is done in the function libtcc.c:tcc_compile() via
the next() and decl(VT_CONST) calls. All the non-terminal procedures are implemented
in tccgen.c.

Table 3.2 lists the EBNF-grammar non-terminals for C expressions (as stated in Appendix A13
of “The C Programming Language” (2nd edition) [KR88]) and the associated TCC parser pro-
cedures.

EBNF non-terminal TCC parser function
expression: gexpr()
assignment-expression: expr_eq()
conditional-expression: expr_cond()
logical-OR-expression: expr_lor()
logical-AND-expression: expr_land()
inclusive-OR-expression: expr_or()
exclusive-OR-expression: expr_xor()
AND-expression: expr_and()
equality-expression: expr_cmpeq()
relational-expression: expr_cmp()
shift-expression: expr_shift()
additive-expression: expr_sum()
multiplicative-expression: expr_prod()
cast-expression: unary()
unary-expression: unary()

Table 3.2: C expression non-terminals and the corresponding parser functions in TCC

As an illustrative example, the implementation of expr_or() is shown in Listing 3.1. Note
that left-recursion can cause top-down parser to go into an infinite loop, hence the rules were not
directly applied, but the list was rather implemented through a loop.
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Listing 3.1 Implementation of the inclusive-OR-expression non-terminal
static void expr_or(void)
{

expr_xor();
while (tok == ’|’) {

next();
expr_xor();
gen_op(’|’);

}
}

The non-terminal procedures also contain the code generation calls (⇒ gen_op(’|’) in
this example) – the concept where source language translation is completely driven by the parser
is called syntax-directed translation.

3.5 Syntax-Directed Translation

The central data structure for the syntax-directed code generation is the value stack. Whenever
operands of expressions are recognized by the parser, they are put on this stack, as elements of
the structure type SValue (defined in tcc.h). The value stack primarily contains informa-
tion on where the operands are located from the perspective of the generated code. It’s field
SValue.r contains the location value, together with some special flags in the upper bits.

Table 3.3 shows a subset of possible values and flags on elements on the value stack (shortly
called svalues).

Location values of r Meaning
REG_RX value is stored in register RX
VT_CONST value is a constant, stored in SValue.c
VT_LOCAL value is stored on the stack (i.e. a local variable) with the offset SValue.c.i
VT_CMP value is stored in the processor’s flags (meaning it is the consequence of a test)

VT_JMP/VT_JMPI value is the consequence of a conditional jump
Flags in r Meaning
VT_LVAL value is an lvalue, meaning that it is a pointer to the wanted value
VT_SYM value is a global variable – it’s symbol SValue.sym must be added to the constant

Table 3.3: Some values and flags for svalues and their meanings

Whenever an operator is parsed, values are popped from the stack as operands, code is
generated and the result is again pushed on the stack.

Consider the following assignment expression: sum = 23 + x where sum and x are
both local variables. Figure 3.1 shows how the code generating functions for binary addition
and for assignment change the value stack for this expression.
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x (VT_LOCAL)

23 (VT_CONST)

sum (VT_LOCAL)

23 + x (REG_R0)

sum (VT_LOCAL) sum (REG_R0)

gen_op(’+’)

vstore()

Figure 3.1: Value stack example for expression sum = 23 + x

An important part for the code generation is the function gv() which evaluates the top
element on the value stack (vtop) into a register.

3.6 Simple Optimizations

Though most sophisticated types of optimizations like loop optimizations (e.g. loop unrolling,
loop interchange) or data-flow optimizations (e.g. common subexpression elimination, constant
propagation) are not possible in TCC as they require the presence of some form of intermediate
representation, it still performs some basic optimizations:

• Constant Folding within single expressions: constant expressions are evaluated at compile-
time rather than computed at run-time; for example, the expression a + (8*9+5) + b*0

is folded into a + 77 . Note that the TCC documentation wrongly states that constant
propagation is performed3, which would also check whether the variables involved are
constant and needs data-flow analysis techniques. Rather, constant propagation is only
done for literals in single expressions.

• Multiplications/divisions by powers of two are substituted by shifts

• Optimization of comparison operators by maintaining a special cache for the processor
flags

3.7 Backpatching

TCC has to solve a classical problem that one-pass compilers have to tackle: whenever control-
flow statements (that is, conditionals or loops) are translated, the target address of forward
branches is not known yet at the point of time when they are generated.

With the technique of backpatching, the instruction is generated with the address operand
left empty (put to zero). The address of the instruction is saved (into a symbol variable) and is
patched later when the code generator knows the target address.

3see http://bellard.org/tcc/tcc-doc.html#SEC35

http://bellard.org/tcc/tcc-doc.html#SEC35
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In some cases, there can be multiple forward branches with the same target address. For
example, in a loop there can be an arbitrary number of break; statements that all target the
address of the first instruction after the loop body. To avoid saving a list of symbols, TCC
creates a linked list with the address operators of the jump instructions. The symbol always
points to latest jump instruction, and this instruction has as operand the address of the preceeding
jump instruction, and so on. The first jump instruction always has zero as operand – this is the
recognition that the linked list ends. The backpatching process then simply involves the traversal
of the linked list, substituting every element with the actual target address. The backpatching is
implemented in arm-gen.c:gsym_addr().

We later adapt this technique to be used for the IR generation as well, see section 3.7.

3.8 Register Usage and Code Quality

The code generator only uses the subset of caller-saved registers (e.g. R0–R3 and R12 for the
ARM architecture; EAX, ECX and EDX for x86) for evaluating expressions, the others remain
completely unused. If there are more registers needed, one registers is chosen to be “spilled”
onto the stack as temporary variable.

As TCC lacks local or global register allocation, the generated code never saves variable val-
ues in registers for the long term. Hence every assignment statements involves load instructions
for all source operands in memory and a store instruction for the assignment. This naturally
leads to fairly inefficient code, similar to that generated by gcc -O0.

Figure 3.3 shows an example for code generated by TCC. The input, shown in Figure 3.2, is
bit counting function which primarily consists of short assignment statements (this function is
later used as benchmark, see bitcount1 in section 9.3). Note the large amount of instructions
which only have the purpose of reloading the registers with values from memory and vice-versa.
From the 12 loop instructions (spanning from addresses c8 to f4), 5 instruction belong to the
load/store category, this is more than 40%. With global register allocation, all those expensive
instructions can be eliminiated, yielding a significant run-time speedup.
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int bit_count(long x)
{
int n = 0;

if (x) do
n++;

while (0 != (x = x&(x-1)));

return(n);
}

Figure 3.2: A simple bit counting function
in C

000000a0 <bit_count>:
... [ Prologue ]

b4: mov r0, #0
b8: str r0, [fp, #-4]
bc: ldr r0, [fp, #12]
c0: teq r0, #0
c4: beq f8 <bit_count+0x58>
c8: ldr r0, [fp, #-4]
cc: mov r1, r0
d0: add r0, r0, #1
d4: str r0, [fp, #-4]
d8: ldr r0, [fp, #12]
dc: sub r0, r0, #1
e0: ldr r1, [fp, #12]
e4: and r0, r1, r0
e8: str r0, [fp, #12]
ec: mov r1, #0
f0: cmp r1, r0
f4: bne c8 <bit_count+0x28>
f8: ldr r0, [fp, #-4]

... [ Epilogue ]

Figure 3.3: TCC-generated ARM object
code for the function bit_count()



CHAPTER 4
Implementation Considerations for the

Proof-of-Concept

This chapter substantiates the rough idea of "implementing a global register allocator for TCC"
by specifying several important choices about the proof-of-concept, predominantly the register
allocation strategy used and the supported target architecture.

4.1 Choice of the Global Register Allocation Strategy

By thinking about how we should either use some form of classical graph coloring algorithm
or linear scan as allocation strategy, the answer is quite obvious if we keep the main feature of
TCC in mind: speed. Since TCC is so fast in compilation – which is especially pleasant for
the unique feature of interpreting C code – and we don’t want to sacrifice too much of that for
global register allocation,⇒ Linear Scan seems to be the perfect choice, with similar reasons
as for JIT compilers. It only traverses once linearly over the live ranges and doesn’t take multiple
rounds like graph coloring approaches, if spill code is inserted.

Another decisive advantage of linear scan over graph coloring is simplicity. This is, apart
from the very short and straightforward algorithm, also reflected in the data structures needed:
linear scan only works with arrays and lists, and the latter can be easily represented as fixed-sized
arrays if we are willing to reserve the space statically large enough and don’t extend memory on
demand. Hence no dynamic data structures are needed, as explained more in detail in chapter 7.
Whereas for graph coloring approaches, usually the graph is represented both as matrix and
adjacency list format. We also would have to support the insertion of spill code into the IR –
in our solution, operands are simply marked and spill code insertion is done by code generator
in the final phase. Our guess is that even a simple graph coloring implementation would take
several times the effort than for linear scan.

With its two main advantages, linear scan matches perfectly the spirit of TCC: simple and
fast.
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The drawback of this choice is the lower quality of the generated object code. This is the
tradeoff for the speed. Compared to the original TCC, the runtime efficiency will still increase
noticably.

4.2 Choice of the Target Architecture

For the proof-of-concept it would be way too costly to implement the register allocator for
all architectures supported by the original TCC (that is: x86, x86_64, ARMv4, TMS320C67).
While the target architecture is a matter of taste, it is advantageous to choose an architecture
where code generation is simple.

We saw several benefits in choosing⇒ ARM over Intel x86(_64) as target architecture:

• RISC machine: few instructions, few addressing modes, simple instruction encoding

• fixed-size instructions (32 bits)

• uniform register file – x86 would be register-constrained and had only 8 registers

The drawback of this choice is that special hardware is needed, as ARM is not common for
desktop environments. With the Raspberry Pi (see Appendix B we found an easy and reasonable
way to develop the TCC register allocation extension for the ARM architecture.

4.3 Language support restrictions

For the proof-of-concept, we restrict the supported input language for TCC to the following C
subset:

• no float/double data type support: the support for more than one register class would
increase the complexity of the implementation drastically; a fairly large part of the TCC
code generation for the ARM architecture deals with floating points (type conversion,
special calling conventions for so-called float aggregates etc.)

• no long long data type support: this data type would be stored in register pairs and
hence complicates the register allocation process

• no GNU extension support

• no support for bitfields

• no support for passing/returning struct data types by value: the ARM calling con-
ventions are quite complex for data types larger than four bytes – this is reflected in
arm-gen.c:gfunc_call(), the function generating code for function calls, con-
tains more than 300 lines; for comparison, i386-gen.c:gfunc_call() is less than
100 lines.

In short, it supports ANSI C (C89) without floating points, bitfields and struct parameter/re-
turn value passing.
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4.4 The Big Picture

Figure 4.1 shows the steps of the implementation that are traversed for every function of the
input source:

IR Code Generation

Liveness Analysis

Linear Scan Register Allocation

Code Generation

Input Token Stream

IR Code with virtual registers

Live Intervals for virtual registers

IR Code with physical registers

Object Code

Figure 4.1: Overview of the Linear Scan extension for TCC

1. IR Generation: The first phase is driven by the top-down parser of TCC. It gets a to-
ken stream of a C source code function as input and outputs a corresponding IR listing
in quadruple format. For all register allocation candidates (local and temporary variables)
virtual register (vreg) numbers are assigned which are used as operands for the IR instruc-
tions, in order to abstract the concrete target destination. [⇒ see chapter 5]

2. Liveness Analysis: This phase determines the live intervals for all occuring virtual regis-
ters in the IR listing. It uses a simple approach that avoids data-flow analysis techniques
but iteratively searches for backward jumps and extends the live interval if necessary.
[⇒ see chapter 6]

3. Linear Scan Register Allocation: The actual register allocation with linear scan is per-
formed in this phase: with the list of virtual registers and its corresponding live intervals
as input, each vreg is mapped to either a concrete physical register or a spilling destination
on the stack. [⇒ see chapter 7]

4. Code Generation: Finally, this phase generates the target code out of the IR listing and
the mapping of virtual registers to concrete target locations which was the result of the
previous phase. [⇒ see chapter 8]



CHAPTER 5
Step 1 – Implementing an Intermediate

Representation

5.1 Implementing the Additional Pass

Since the basic translation unit for global register allocation is a function, we take the function
parsing procedure gen_function() in tccgen.c as starting point for our implementation.
Listing 5.1 shows the essential parts of the original TCC.

Listing 5.1 Function parsing / code generation procedure in original TCC
1 static void gen_function(Sym *sym)
2 {
3 [ ... ]
4 gfunc_prolog(&sym->type);
5 rsym = 0;
6 block(NULL, NULL, NULL, NULL, 0, 0);
7 gsym(rsym);
8 gfunc_epilog();
9 [ ... ]

10 }

Our implementation is shown in Listing 5.2. In a first step, the IR code listing is cleared.
In the original implementation, the parsing of the function parameters and the prolog code gen-
eration are tied together in gfunc_prolog(). This doesn’t work for our approach, since code
generation is only done in the last step. For this reason we have an own function IR_AddFuncParams()
which parses the parameters without generating code. The block() call, representing the top-
down parsing non-terminal symbol for the whole function block, remains unchanged. Within
this call, the IR code is generated by invoking functions to the tccir.c module. The remain-
ing calls are pretty self-explanatory.

28
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Listing 5.2 Function parsing / code generation procedure in our extended TCC
1 static void gen_function(Sym *sym)
2 {
3 [ ... ]
4 IR_Clear(); // Phase 1: IR code generation
5 IR_AddFuncParams(&sym->type);
6 block(NULL, NULL, NULL, NULL, 0, 0);
7 IR_LivenessAnalysis(); // Phase 2: Liveness Analysis
8 LS_RegisterAllocation(); // Phase 3: LSRA
9 IR_RegisterAllocationParams();

10 IR_GenCode(); // Phase 4: Code generation
11 [ ... ]
12 }

5.2 Abstracting Variables with Virtual Registers

As the original TCC doesn’t know any intermediate representation and hence also provides no
abstraction for values that could possibly be kept in registers, we have to implement the concept
of virtual registers first. We use only two types of register allocation candidates: local variables
and (compiler-generated) temporaries.

Local variables

As soon as a local variable is declared, a unique virtual register identifier should be assigned to
it. First, the data structure for the symbol table (struct Sym in tcc.h) is extended by the
vreg variable:

typedef struct Sym {
...
unsigned int vreg; /* associated virtual register */

}

The assignment of the virtual register takes place in tccgen.c:sym_push(), where we
first check if the symbol fits to our criteria: the symbol must be a local variable which is an lvalue
(arrays, for example, are no lvalues) and must fit into a single register, that’s why we don’t in-
clude variables of the basic type VT_STRUCT1. Then we call tccir.c:IR_GetVRegLocal()
to get a new uniqe virtual register identifier and assign it to the .vreg field. The default value
for this field is −1, meaning that the symbol is not associated to a virtual register.

The extension of the function is shown in Listing C.1. When identifiers are recognized by
the parser and put on the value stack, the new vreg field has to be assigned as well.

1floating point data types and 64-bit values are not supported in our implementation and will throw a compiler
error when declared, so we don’t need to exclude them explicitely at this point
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Compiler-generated temporary variables

Temporary variables, generated during the evaluation of expressions, are the other register can-
didates. For them, the extension on the Sym data structure above can’t be used, since they are
nameless and hence are not stored in the symbol table. Rather they only appear in the value
stack as SValues, so we need to extend this structure as well:

typedef struct SValue {
...
unsigned int vreg; /* associated virtual register */

}

This field is then assigned with a call to tccir.c:IR_GetVregTemp() when needed,
usually for the top element:

vtop->vreg = IR_GetVregTemp();

In the IR, we always access the virtual register identifier directly through this field and don’t
differentiate between local variables. For this reason we copy the vreg value from the symbol
table to the value stack as soon as a local variable is referenced.

5.3 IR Instruction Set

For the design of an intermediate representation, it is useful to keep two conflicting goals in
mind, considering the level of abstraction: on the one hand, the IR should be fairly easy to
generate out of the source language. On the other hand, it should also resemble the target
assembler code to ease the final code generation.

For compilers supporting multiple architectures, the latter goal can’t be achieved if the target
architectures are too different. However, our proof-of-concept implementation supports only
ARM, and for the register allocation it is practical to have a representation that is basically the
same than the target instruction set, with the possibility to abstract physical registers with virtual
registers.

Encoding

We use the most common way of representing intermediate instructions, namely three-address-
code (TAC) [ASU86]. In this form, each instruction has three operands (at most), one for desti-
nation and two for source, e.g.:

ADD x, y, z

meaning x := y + z. This fits perfectly well to the ARM target architecture which is a
three-address machine, also consisting mostly of instructions with three operands.

The enconding takes place in Quadruple form. As type for the operands, we simply take
the SValue structure (defined in tcc.h) used during code generation in the original TCC,
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since it contains all the original information needed. This results in the following structure
Quadruple, defined in tccir.h:

typedef struct {
int op;
SValue src1;
SValue src2;
SValue dest;

} Quadruple;

The data structure used for the IR instruction listing is a fixed-size array together with a
counter of how many quadruples are currently in use: 2

#define MAX_QUADRUPLES 10000
Quadruple IR[MAX_QUADRUPLES];
...
int irpc; /* location of the next free quadruple */

Description of Instructions

Figure 5.1 shows an overview of the IR instruction set. It does not abstract the whole ARM
instruction set, but rather a subset that is used in the code generator of the original TCC. Note that
we don’t need a separate load operation, since the source operands already implicitely encode
the location through the r field (see also section 3.5), including direct and indirect addressing
modes.

The following locations types are possible:

• VR: operand is a virtual register (location is not known yet)

• LV: operand is located on the stack (i.e. local variables that are not allocation candidates)

• GV: operand is located on a fixed memory address (i.e. global variables)

• IM: operand is an immediate value

Data-Processing Instructions

IR operations belonging to this category are the simplest as they map directly to the corre-
sponding target architecture instruction. Table 5.1 shows the mapping between IR and ARM
instructions.

All instructions have three operands, except IR_ASS which only has one source operand.
The following operand types are allowed for each of those instructions:

• Dest: VR/LV/GV
2Note that if the number of IR instructions for a function exceeds MAX_QUADRUPLES, the compiler aborts with

an error.
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IR operation dest src1 src2 Code generation semantics
Data-Processing Instructions

IR_ADD X X X dest ← src1 + src2
IR_SUB X X X dest ← src1 - src2
IR_RSUB X X X dest ← src2 - src1
IR_MUL X X X dest ← src1 * src2
IR_AND X X X dest ← src1 & src2
IR_OR X X X dest ← src1 | src2
IR_XOR X X X dest ← src1 ˆ src2
IR_SHL X X X dest ← src1 « src2
IR_SHR X X X dest ← src1 » src2
IR_SAR X X X dest ← src1 / (2 ˆ src2)
IR_ASS X X - dest ← src1

Conditional Instructions and Branches
IR_CMP - X X compare(src1, src2)
IR_TSTZ - X - test_for_zero(src1)
IR_SETIF X X - dest ← (CC == src1) ? 1 : 0
IR_BRANCHIF X X - if (CC == src1) jump to dest
IR_JMP X - - jump to dest

Function Call and Return Instructions
IR_RETVOID - - - return without value
IR_RETVAL - X - return with value src1
IR_PARAM - X X set src2 as parameter
IR_CALLVOID - X - call function src1
IR_CALLVAL X X - call function src1, store return value in dest
IR_PARAMVOID - - - void parameter

Special Instructions
IR_STORE X X - mem[dest] ← src1

Figure 5.1: Overview of IR operations
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IR instruction ARM instruction
IR_ADD ADD
IR_SUB SUB
IR_RSUB RSB
IR_MUL MUL
IR_AND AND
IR_OR OR
IR_XOR EOR
IR_SHL MOV with “Logical Shift Left”
IR_SHR MOV with “Logical Shift Right”
IR_SAR MOV with “Arithmetical Shift Right”
IR_ASS MOV

Table 5.1: Mapping from IR instructions to ARM instructions

• Src1: VR/LV/GV

• Src2: VR/LV/GV/IMM (not used for IR_ASS)

The concrete target instructions can only have physical registers and small immediate values
as operands. The code generator automatically creates instructions to fetch the values into ap-
propriate registers before emiting the actual abstracted instruction. Hence each IR instruction
is mapped to multiple ARM instructions, if at least one operand is located in memory. This
mapping is described more in detail in section 8.3.

Conditional Instructions and Branches

• IR_CMP: compare the two operands (→ ARM CMP instruction)

– Dest: – (unused), Src1: VR/LV/GV, Src2: VR/LV/GV/IMM

• IR_TSTZ: test operand for zero (→ ARM TEQ instruction)

– Dest: – (unused), Src1: VR/LV/GV, Src2: – (unused)

• IR_SETIF: set destination operand to 0/1 dependend on condition code

– Dest: VR/LV/GV, Src1: IMM (condition code to test for), Src2: – (unused)

• IR_BRANCHIF: jump to IR destination if condition is met

– Dest: IMM, Src1: IMM (condition code to test for), Src2: – (unused)

• IR_JMP: jump to IR destination

– Dest: IMM, Src1: – (unused), Src2: – (unused)
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Function Call and Return Instructions

• IR_RETURNVOID: return from function without value

– Dest: – (unused), Src1: – (unused), Src2: – (unused)

• IR_RETURNVAL: return from function with value

– Dest: – (unused), Src1: VR/LV/GV/IMM, Src2: – (unused)

• IR_PARAM: set parameter (before function calls)

– Dest: – (unused), Src1: IMM (argument number), Src2: VR/LV/GV/IMM

• IR_CALLVOID: call void function

– Dest: – (unused), Src1: GV, Src2: – (unused)

• IR_CALLVAL: call function with return value

– Dest: VR/LV/GV, Src1: GV, Src2: – (unused)

• IR_CALLVOID: void parameter (need to be passed for functions without parameters)

– Dest: – (unused), Src1: – (unused), Src2: – (unused)

Special Instructions

• IR_STORE: encodes indirect addressing mode for assignments (the value contained at
“Dest” is the address of the target)

– Dest: VR/LV/GV (unused), Src1: VR/LV/GV/IMM, Src2: – (unused)

5.4 Simple Expressions

This section describes the generation of IR code for all expressions which lead to the generation
of straight-line code without function calls – differently put, expressions that only emit IR in-
structions that we assigned to the category of data-processing instructions. Boolean expressions
(consisting of the operators for logical AND, OR and NOT, as well as the relational operators
and the ternary operator) involve branches due to short-circuit evaluation and are covered in the
next section 5.5. The division and modulo operators generate IR code for function calls, as those
operations have to be simulated in software in the ARMv4 architecture. This will be covered in
section 5.6.

Binary ALU operations

Listing C.2 shows the replacement to the low-level code generating function gen_opi().
We simply pass the two top elements of the value stack to the new IR instruction, together

with a destination operand that refers to the new temporary register. This is then again the new
top value for the value stack, which is decreased by one.
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Assignment

The assignment operator is handled with tccgen.c:expr_eq(), where vstore() is called
to invoke the low-level code generator call store(). The replacement is simple (it is safe to
ignore the parameters since there is only occurence of store() in our code and it does the
right thing):

Listing 5.3 Assignment operator implementation
1 static void ir_store()
2 {
3 if ((vtop[-1].r & VT_VALMASK) == VT_LOCAL)
4 IR_PutOp(IR_OP_ASS, &vtop[0], NULL, &vtop[-1]);
5 else
6 IR_PutOp(IR_OP_STORE, &vtop[0], NULL, &vtop[-1]);
7 }

Redundant Move Optimization

With the introduction of compiler-generated temporaries, many IR instruction blocks with the
following scheme are created for assignment expressions:

IR_[*] VRx, VRa, VRb
IR_ASS VRy, VRx

where IR_[*] can be any data-processing IR instruction (note that for IR_ASS, there is no
second source operand VRb). Given that the virtual register X is not used elsewhere, the second
instruction is obviously redundant, as the result could be immediately stored in register Y in the
first expression:

IR_[*] VRy, VRa, VRb

We have called the collapsing of those instructions redundant move optimization. It is per-
formed directly when a new instruction is appended to the current IR listing. The relevant code
for the optimization in IR_PutOp() is shown in Listing C.9.

Example

Figures 5.2 and 5.3 show an example of a small C code snippet and its corresponding IR listing.
Note that we have only virtual registers and immediate values as operands in this case, where
local variables are starting with VReg0 and compiler-generated temporaries start with VReg100.
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void straight_example()
{
int a, b, c;
a = 200;
b = (a*4) | b;
a = (a+b)*(5+c+8*9);
b += a;
c += ((b*3-b)<<2) & 0xf0;
--b;

}

Figure 5.2: Straight-line C code snippet

// a <= VR0, b <= VR1, c <= VR2
01: IR_ASS VR0, #200
02: IR_SHL VR100, VR0, #2
03: IR_OR VR1, VR100, VR1
04: IR_ADD VR102, VR0, VR1
05: IR_ADD VR103, VR2, #5
06: IR_ADD VR104, VR103, #72
07: IR_MUL VR0, VR102, VR104
08: IR_ADD VR1, VR1, VR0
09: IR_MUL VR107, VR1, #3
10: IR_SUB VR108, VR107, VR1
11: IR_SHL VR109, VR108, #2
12: IR_AND VR110, VR109, #240
13: IR_ADD VR2, VR2, VR110
14: IR_ADD VR1, VR1, #-1

Figure 5.3: The corresponding IR listing for
function straight_example

5.5 Boolean Expressions and Control-Flow Statements

Backpatching

The technique of backpatching, introduced in section 3.7, is also applied for the IR code gen-
eration. This makes sense since this syntax-directed generator is driven by the same top-down
parser than the original code generator, emitting the (abstracted) instructions in basically the
same order – the problem of not knowing the target address of forward branches at the point of
time when they are generated occurs here as well.

Instead of concrete code (=text segment) addresses for the backpatching symbol values,
we use the IR listing addresses of the corresponding quadruples. The backpatching functions
IR_Backpatch() and IR_BackpatchToHere() are shown in Listing C.8.

Relational and Logical operators

For the support of relational operations (those are ==, !=, <, >, <=, >=) we first extend our
ir_gen_opi() function (see Listing C.3). The code generator just emits a CMP instruction
and saves the operation in vtop->c.i.

The decision on how to generate code for a relational expression (and for every other boolean
expression as well) is context-dependend: if the expression is part of another boolean statement
or as condition for a control-flow statement (e.g. if), then a branch has to be taken. In the other
cases, the expression has to be evaluated to yield a numerical value representing true (anything
but zero) or false (zero).



CHAPTER 5. STEP 1 – IMPLEMENTING AN INTERMEDIATE REPRESENTATION 37

Control Flow Statements

Having implemented boolean expressions as well, the IR code generation of control-flow state-
ments is quite easy. It basically involves again only a substitution for the backpatching of
branches, which occur in the following statements/operators:

• if/else statement

• while and do/while statement

• for statement

• switch/case statement

• goto statement

• ternary ?, : operator

The code generation of all the above statements is implemented in tccgen.c:block(),
except for the ternary operator which is trated in tccgen.c:expr_cond().

As an example, the required modifications needed for the while statement is shown in
Listing C.7.

5.6 Function Calls

A function call is recognized by the parsing function tccgen.c:unary(), in the while-
loop for post operations, after the check whether the current token is ’(’. Instead of leaving the
result of the parameter code generation on the value stack, we generate IR_PARAM instructions
and pop it off the stack again immediately.

Besides of the parameter itself which is passed in the first operand, also the parameter index
is stored as second operand. This is important for nested function calls (e.g. f(x, g(y,
z)...)) when it comes to correctly associating the parameters to the calls in the IR code (this
will be explained in section 8.5).

Due to the calling conventions of ARM, we can only handle the first four parameters this
way (which are finally passed in registers) – the remaining parameters have to be passed in
reverse order! Hence we have to keep them on the value stack and add another loop before
the call itself will be generated (an IR_CALLVOID or IR_CALLVAL instruction, depending on
whether there is a return value).

Both the extension to the parser are listed in Listings C.5 and C.6.

Divison and Modulo operations

The ARMv4 instruction set doesn’t support division or multiplication, hence those instruc-
tions have to be emulated in software. The IR generator creates function call instructions to
__aeabi_idivmod() or __aeabi_udivmod() (dependend on whether the calculation is
signed or unsigned) in this case, as shown in Listing C.4.
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int test(int a, int b);

int full_example(int n)
{
int x=0, y=1;
while (n--) {

x += y;
y += test(x+5, y-10);

}
return y;

}

Figure 5.4: C code snippet involving
branches and function calls

// n <= VR200, x <= VR0, y <= VR1
01: IR_ASS VR0, #0
02: IR_ASS VR1, #1
03: IR_ASS VR100, VR200
04: IR_ADD VR200, VR100, #-1
05: IR_TSTZ VR100
06: IR_BRANCHIF #15, [==]
07: IR_ADD VR0, VR0, VR1
08: IR_ADD VR103, VR0, #5
09: IR_PARAM --, #1, VR103
10: IR_SUB VR104, VR1, #10
11: IR_PARAM --, #2, VR104
12: IR_CALLVAL VR105, [test()]
13: IR_ADD VR1, VR1, VR105
14: IR_JMP #3
15: IR_RETVAL --, VR1

Figure 5.5: The corresponding IR listing for func-
tion full_example

Example

Figures 5.4 and 5.5 show another IR code generation example, this time involving the full in-
struction set, with branches and function calls.



CHAPTER 6
Step 2 – Calculating Variable Live

Intervals

As prerequisite for register allocation, liveness information about all variables and temporary
values need to be known.

Usually this is achieved with Data-Flow-Analysis techniques, which target the problem with
iterative solutions over the control flow graph of the intermediate representation.

For linear scan, only contiguous live intervals are needed, which are conservative approxi-
mations of the live ranges (see section 2.7).

6.1 Simple Approach

We have developed an easy approximative approach to calculate the liveness intervals which
fits in well to the simple and fast paradigm of TCC and linear scan. Consider how a liveness
range would be calculated for straight-line code: we simply search on the IR forward from the
start to find the first definition of a certain virtual register and then have the starting point of the
interval. Accordingly, we search backwards for the last usage of this virtual register and have its
interval’s endpoint. This is illustrated in Figure 6.1. We label the intervals yielded by this trivial
technique basic live intervals.

This method does not only work for straight-line code, but also for IR code only containing
forward branches: if the last usage of a variable has been found at instruction n, any instructions
executed after n won’t branch to a location smaller than n and with this also never need the
relevant virtual register again. No instruction is executed more than once. Hence it is guaranteed
that the found start- and endpoint of the interval are correct.

However, as soon as we have backwards jumps (that is, by loops), the virtual register could
be needed again in the future after instruction n has passed. We now simply extend the end of
the simple live interval if there is any backwards jump on a later instruction that has a destination
within the basic interval. This technique is depicted in Figure 6.2.
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1 ....
2 ... = Y
3 ....
4 X = ...
5 ....
6 ... = X
7 ....
8 X = ...
9 ... = X

10 ... = Y
11 Z = ...
12 JMP to 5
13 ....

first definition

last usage

Figure 6.1: Basic live interval determina-
tion for virtual register X ⇒ L = [4, 9]

1 ....
2 ... = Y
3 ....
4 X = ...
5 ....
6 ... = X
7 ....
8 X = ...
9 ... = X

10 ... = Y
11 Z = ...
12 JMP to 5
13 ....

jump into L
⇒ extend

Figure 6.2: Live interval extension for vir-
tual register X ⇒ L′ = [4, 12]

Expressed more formally, the method works as the following:

1. find the basic live interval L = [startL, endL] by linearly searching for first definition
and last usage

2. repeatedly search downwards starting from instruction endL + 1 for any branching in-
structions (OP_JMP or OP_JMPIF);
if any particular instruction I with address Iaddr and destination Idest targets to within the
basic live interval (Idest ∈]startL, endL]), extend the live interval byL′ = [startL, Iaddr].

The basic live intervals can already be determined efficiently in the IR generation phase:
whenever an IR instruction is add to the listing, the basic interval of the occuring operands is
updated accordingly. The relevant parts of the IR_PutOp() function is shown in Listing C.10.
This way we only have to perform the linear search for the second step.

Listing C.11 shows the the core implementation for the simple liveness determination through
live interval extension, based on the basic live intervals. The function sets the live interval for
a given virtual register. Note that compiler-generated temporaries are never live across loop
boundaries, hence step 2 is only needed for the vreg type of local variables. For temporaries, the
function is called with check_for_backwards_jumps set to zero.

While our method is simple and obvious much faster than any data flow analysis which needs
a CFG, it is very approximative and can lead to fairly large live ranges, especially for deeply
nested loops. We sacrifice this imprecision in favor of fast compile-time and low implementation
effort. As we show in chapter 9, the generated code is still efficient and the trade-off makes sense,
keeping the original goal of TCC in mind.
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6.2 Restriction

The method has one known restriction in terms of variable initializations: whenever a variable is
live across loops, it has to be initialized before entering the loop. Usually this is not a problem,
since the critical case can only occur if an initialization is bound to a conditional statement within
the loop – if the initialization is unconditional, then the variable is not live across the loop, since
the value is guaranteed to be written before it is read.

Consider the minimal code example in Listing 6.1. The first step of our algorithm yields the
live interval [7, 9] (this is now applied to the source listing line numbers, in reality it would be
the corresponding numbers in the IR, of course). Since the later backwards jump isn’t branching
into this interval, it is not extended, and the final determined live interval is still [7, 9]. This is
obviously wrong because the content of var can be still needed in a new interation of the loop.

Listing 6.1 Example of a code snippet where our simple live interval calculation fails
1 void foo(...)
2 {
3 int var;
4

5 for (...) {
6 if (...) {
7 var = ...;
8 } else {
9 ... = var;

10 }
11 }
12 }

Solution

We overcome the restriction by a special treatment for intervals that have their first definition
within an if/else-block within a loop in a third step. In this case the live interval is extended to
the most outer loop. For the example in Listing 6.1 the algorithm would yield the interval [5, 11].

The source code snippet for this solution is shown in Listing C.12.

6.3 Interface to next phase

For each liveness interval calculated in this step, the linear scan module is informed through a
call to LS_AddLiveInterval() which takes three arguments: the virtual register, the start
point and the end point of the interval each.



CHAPTER 7
Step 3 – Performing Global Register

Allocation with Linear Scan

Having the intermediate representation and its corresponding liveness information about the
virtual registers ready, the register allocation itself is quite simple to implement. This is due
to the nature of the linear scan algorithm: no graph data structure is built at all, but the central
information we work on are simply the liveness intervals of the virtual registers, which are
linearly iterated. Unlike in most graph-based approaches, the algorithm doesn’t need to run
multiple times after spill code has been introduced.

Note that the only goal of this phase is to map virtual registers in the IR to either concrete
physical registers or, in case spilling is needed, with the target address on the stack (as offset
from the frame pointer). Code generation, especially the critical part of generating spill code,
out of the register-allocated IR is much more complex and will be treated in the next chapter.

The implementation of this phase is found in the file tccls.c.

7.1 Register Set Mapping

We use the register set R0–R14 in the following way (remember that R15 is the program counter
and hence is not free):

register usage
R0–R3 argument and return registers
R4–R10 registers used by LSRA for virtual register substitution
R11 frame pointer (fp)
R12 → spilling register 1 (ip)
R13 stack pointer (sp)
R14 → spilling register 2 (lr)
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Out of 15 general-purpose registers, we use only seven (R4–R10) for the assignment to
virtual registers (K = 7), that is, local variables or compiler-generated temporaries. This is
due to some decisions that keep the implementation simple: by never using the argument and
return registers for other purposes, we avoid the creation of extra spill instructions before and
after function calls (the exception to this is if the calls are nested, see section 8.5). By reserving
two registers for spilling (it’s two because there are two source operands in the IR and in the
final machine instructions, see section 8.3), we don’t need to rewrite the IR code. We also use
a frame pointer besides of the obligatory stack pointer, even though all local variables could be
referenced from the stack pointer as well1, but this is way more complicated.

7.2 Relevant Data Structures

While in the paper the data structures needed are described as lists we don’t need any dynamic
data structures like linked lists at all, but can easily implement everything with simple statically-
sized arrays.

The List of Live Intervals

This list is generated from the previous phase, the data-flow analysis, and serves as input to the
register allocator. The main loop of the linear scan traverses this list linearly after sorting it in
order of increasing start point. We define a live interval with the following structure:

typedef struct {
unsigned int vreg; /* virtual register */
unsigned int reg; /* assigned physical register */
unsigned int loc; /* spilling destination */
unsigned int start;
unsigned int end;

} LiveInterval;

Its the task of the register allocation algorithm to assign to every live interval (that is, to every
virtual register in the IR) the fields loc and reg. Having the value loc set to non-zero implies
that the virtual register is spilled and the reg field is ignored in this case. Conversely, if loc is
set to zero, we know that a physical register reg has been assigned to the virtual register by the
allocator.

The list of live intervals is simply created by a fairly large fixed-size array LiveIntervals
and a variable nIntervals which indicates how many entries of the array are used:

#define MAX_LIVEINTERVALS 100000
LiveInterval LiveIntervals[MAX_LIVEINTERVALS];
int nIntervals;

With this data structure, sorting entries to some criteria is as easy as using qsort() pro-
vided by the C standard library, together with a proper compare function.

1in gcc, this optimization is turned on with the -fomit-frame-pointer option
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The Pool of Free Registers

The register pool defines which of the physically available registers are currently free for alloca-
tion. It can be simply represented by an array of size K (K being the total number of registers
available for allocation) that represents the status of the registers R0 to RK−1 each: if entry n
is non-zero, register Rn is free and vice versa. Initially, all registers are free, hence we set all
entries of the register_pool[] array to one.

We need two functions operating on this data structure: one that returns the next free register
from the pool and mark it as used (RegisterPool_Get()), and a second ones that frees a
given register again (RegisterPool_Pool()). Both are shown in Listing C.13.

The Active List

The active list contains all live intervals that are currently overlapping. The size of this list never
exceeds the number of available registersK; again we store the list in a linear array ActiveSet
together with a counter variable nActive, but this time with pointers to LiveInterval
entries.

LiveInterval* ActiveSet[K];
int nActive;

Adding a new element to the list can be done by indexing it with nActive which is incre-
mented afterwards. To keep the list sorted by end intervals, we also have to call qsort() with
the proper comparison function.

ActiveSet[nActive++] = &someliveinterval;
qsort(&ActiveSet[0], nActive, sizeof(ActiveSet[0]), licomp_endpoint);

7.3 Algorithm

Having prepared all necessary data structures and its manipulating functions, implementing the
algorithm with the pseudocode from [PS99] is straight-forward. The algorithm is so simple that
its implementation was basically completed within a few hours. The module consists only of
about 200 lines of code, including debugging code.

The core functions ExpireOldIntervals(), SpillAtInterval() and LSRA()
(see section 2.7 for a formal description) can be found in the Appendix Listings C.14, C.15 and
C.16 each.2

2The interval compare functions licomp_startpoint() and licomp_endpoint() which are passed to
the sorting function are trivial and hence not listed explicitely.
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7.4 Interface to next phase

Now that all live intervals were assigned physical registers respective memory locations in case
of spilling, we can create a table that maps virtual registers to destinations with fast access. The
array RegMapping[] has the following structure:

typedef struct {
int preg;
int offset;

} VRegReplacement;
VRegReplacement RegMapping[MAX_VARS+MAX_TEMPS+MAX_PARAMS];

The array is defined in tccir.c and is filled out by the linear scan module for every live
interval with the following function:

void IR_ReplaceVReg(int vreg, int offset, int preg);

To code generator can simply access the concrete target location of a virtual register vreg
by accessing RegMapping[vreg].



CHAPTER 8
Step 4 – Generate Target Code

The last crucial step of our implementation is the generation of the object code. Through the
decisions made by the register allocation algorithm in the previous step, we now have a IR code
listing ready where all virtual registers have been mapped to either physical registers or spilling
destinations.

8.1 Prologue and Epilogue

Prologue

The function prolog has the following tasks: save the link register to give the control back to
the caller later, 1 save all callee-saved registers that are modified (at least fp, sp, optionally
R4–R10), provide memory on the stack for the local variables. In our implementation, we
additionally push the arguments on the stack and access them there, unless the function is a
leaf-function (e.g. it contains no other function calls and hence doesn’t need the registers R0–
R3 for parameter passing respective receiving of return values). All this work is done by code
performing the following steps:

1. save copy of stack pointer

2. if the function has arguments: push argument registers on the stack, adjust stack pointer

3. push callee-saved registers (including the stack pointer copy) and link register on the stack

4. set frame pointer

5. adjust stack pointer to the local variable space used (aligned to a multiple of 4)

Figure 8.1 shows the stack layout after the prolog is executed.
1Note that this step could theoretically be omitted, if we are guaranteed to know that the link register is never

modified in this function. However, in our case where the lr is used as spilling and constant register, chances are
very low for this – except for small leaf functions – and it doesn’t pay off to implement this optimization.
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...

parameters FP + 28

padding

return address (LR)

stack pointer (SP)

frame pointer (FP)

R10

. . .

R5

R4 FP

optional, depends
on registers used

...

local variables SP

...

Figure 8.1: Stack layout after execution of prolog
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Note that the gray padding area is needed to simplify the code generation by always access
the function parameters at the same offset relative to the frame pointer. In case that the function
is a leaf-function and there is no local variable space needed at the stack, the saving of stack and
frame pointer is omitted.

The implementation of the prolog is located in tccir.c:GenProlog() (see Listing C.17).

Example

Suppose we have a function with two arguments that uses 10 bytes of stack space and three
callee-saved registers (R4–R6) have been used by the register allocator. Then the prolog looks
like the following:

00000000 <prolog_demo>:
0: e1a0c00d mov ip, sp ; step 1
4: e92d0003 push {r0, r1} ; step 2
8: e24dd010 sub sp, sp, #16 ;
c: e92d5870 push {r4, r5, r6, fp, ip, lr} ; step 3
10: e1a0b00d mov fp, sp ; step 4
14: e24dd00c sub sp, sp, #12 ; step 5

......

Epilogue

The function epilog has the purpose of restoring all the callee-saved registers from the stack
and jumping back to the caller code (that is, the next instruction after the “branch-and-link”
instruction). Since the return address is also saved in a register, we can perform this with a
single block data load instruction:

.....
30: e89ba870 ldm fp, {r4, r5, r6, fp, sp, pc}

.....

With the frame pointer as base, all saved registers R4–R10 are restored, the saved link reg-
ister is transferred into the program counter. While the original TCC only puts the epilog once
at the end and performs a jump to this location whenever desired, we save this jump and put this
single instruction on every place where a return is performed.

The implementation of the prolog is located in tccir.c:GenEpilog() (see Listing C.17).

8.2 Data-Processing Instructions

The most elementary part of the code generator is the generation of data-processing instruc-
tions. Those are the instructions that were abstracted by the intermediate representation and thus
represent the actual logic of the translated program.
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Since ARM is a load/store architecture, those instructions must have either physical regis-
ters or constant values as operands. The function GenDataProcessingOp() is shown in
Listing C.18.

8.3 Generation of Spilling Code

The category of spilling registers serves several purposes:

• access of variables in memory (global variables, variables on the stack)

• spill code temporary memory

• loading of large constants that don’t fit into the immediate field of instructions

Suppose we have the following general IR three-address code instruction

Dest→ Src1 (op) Src2

and RSrc1, RSrc2 and RDest describe the physical register of the operands. If an operand RX

is not stored in a register, RX is set to NIL. Then the IR instruction is translated with the
following scheme:

• if RSrc1 = NIL, then

– generate code to evaluate Src1 into R12 (= spilling register 1)

– RSrc1 ← 12

• if RSrc2 = NIL, then

– generate code to evaluate Src2 into R14 (= spilling register 2)

– RSrc2 ← 14

• if RDest = NIL, then

– RDest ← 14

• generate code for the data-processing instruction RDest ← RSrc1 (op)RSrc2

• if RDest = 14, then

generate code to store R14 into the memory location that is specified in Dest

This scheme is implemented with the following simplified code (see tccir.c:IR_GenCode()):
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dest_reg = OperandInMemory(dest) ?
LoadIntoReg(dest, 14) : RegMapping[dest->vreg].preg;

src1_reg = OperandInMemory(src1) ?
LoadIntoReg(src1, 12) : RegMapping[src1->vreg].preg;

src2_reg = OperandInMemory(src2) ?
LoadIntoReg(src2, 14) : RegMapping[src2->vreg].preg;

// generate ARM instruction with dest_reg, src1_reg and src2_reg

if (dest_reg == 14)
StoreFromReg(dest, 14, 12);

Example

In the worst case, all three operands of a data-processing operations are in the memory, with
large stack offsets. Consider the following example:2

IR_ADD StackMem[-40000], StackMem[-42000], StackMem[-44000]

This IR instruction is translated to object code by the code generator with the following steps:

• Prepare first source operand:

1. → Load constant -42000 into R12

2. → Indirect load of [FP-R12] into R12

• Prepare second source operand:

1. → Load constant -44000 into R14

2. → Indirect load of [FP-R14] into R14

• Generate actual ARM instruction:

– → generate ADD R12, R12, R14

• Prepare destination operand and store result:

1. → Load constant -40000 into R14

2. → Store of R12 into [FP-R14]

2Note that this IR can not only emerge as result of a large number of spilled variables, but as well when high-
indexed elements of very large fixed-size arrays on the stack are accessed
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8.4 Jumps and Branches

For generating branches, we need a mapping between IR addresses and concrete target code
addresses (that it, addresses in the text section). This is represented as a simple array that is
filled during the first pass of the code generation phase, as the text section pointer proceeds.

The branch instructions (IR_OP_JMP and IR_OP_BRANCHIF) generate instructions with
empty operands and are all patched in a second pass. This is shown in Listing C.19.

8.5 Function Calls

In the ARM architecture the first four arguments for functions are passed in dedicated registers.
This reduces the calling overhead, but has also a drawback for our implementation: when hav-
ing nested function calls, we need to save those registers in-between. Consider the following
example, a simple expression involving nested calls and the according IR code:

Expression:
f(10, g(20));

Corresponding IR listing:
=================================

IR_PARAM --, #1, #10
IR_PARAM --, #1, #20
IR_CALLVAL VR100, [g()]
IR_PARAM --, #2, VR100
IR_CALLVOID --, [f()]

=================================

Both 10 and 20 are first parameters to function calls and hence have to be stored in register
R0. But obviously, the straight approach would overwrite the 10 multiple times; first by the
value 20, then by the return value of function g(). The translation of f(10, g(20)); would
hence wrongly behave as x = g(20); f(x, x);. Even if there appears a function call
without return value, R0 could still be modified within g(). 3

For this reason, we have to keep track of the nesting level of function calls as well as the cur-
rent parameter count of all the nesting levels. The affected registers have to be saved on the stack
prior to first parameters (the start of a call phase, nesting level increases) and restored immedi-
ately after function calls (the end of a call phase, nesting level decreases). The implementation
handling this parameter and return value passing is found in Listing C.20.

The correct translation of the example above is shown in Listing 8.1.
3Remember that register R0-R3 are caller-saved, hence we have to assume that any function call modifies them!
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Listing 8.1 correct code for the expression f(10, g(10))
......

44: e3a0000a mov r0, #10
48: e92d0001 push {r0}
4c: e3a00014 mov r0, #20
50: ebfffffe bl 0 <g>
54: e1a04000 mov r4, r0
58: e8bd0001 pop {r0}
5c: e1a01004 mov r1, r4
60: ebfffffe bl 20 <f>

.....



CHAPTER 9
Results

The following sections describe how our implementation (abbreviated as “tccls” in this chap-
ter) affects the performance of TCC both in run-time and compile-time. We compare the results
with the popular GNU compiler gcc. All benchmarks and their results, including object dump
listings for each compiler configuration (intended for people who don’t have a proper target
available but still want to see the generated code) can be found in the benchmarks folder of
our repository.

9.1 Test Environment and Methods

We evaluate the performance on a Raspberry Pi Model B (see Appendix B for hardware details)
running with the standard clock rate of 700 MHz. The board uses as operating system Raspbian
Linux, the officially recommended distribution based on Debian “wheezy” 7.01, running kernel
3.10.25+.

The used compilers versions are tcc 0.9.26 and gcc 4.6.3. For a fair comparison, we
tell gcc to compile for ARMv4 (by passing the parameter -march=armv4), as this is the
architecture that is targeted by tcc and tccls. By default gcc would compile for architecture
ARMv6, complying to the CPU (an ARM1176) of the Raspberry Pi.

All measurements are performed with the standard Linux tool time2. Due to some devia-
tions in the returned execution times, the median of 15 samples is taken.

Much more exact values and other metrics like memory loads/store, cache misses/hits could
be achieved with the performance counter subsystem in Linux, which is accessed by the tool
perf. Unfortunately, though hardware counters are available for the Raspberry Pi, the kernel
used doesn’t support them yet.3

1see http://www.raspbian.org
2note that we use the seperate tool called time, found in /usr/bin/time, not the bash built-in time
3see http://web.eece.maine.edu/~vweaver/projects/perf_events/faq.html#q4b
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9.2 Simple Showcase Example: The Collatz Conjecture

The collatz conjecture is an unsolved mathematical problem first proposed by Lothar Collatz in
1937.4 It states that starting with an arbitrary integer a0 and repeatedly applying the iteration

an+1 =

{
an
2 , if an is even
3an + 1, if an is odd

finally always returns to 1. For example, for a0 = 20 the iteration is 20 → 10 → 5 → 16 →
8→ 4→ 2→ 1.

The benchmark is a simple program which accepts an unsigned number n as command line
argument and checks the conjecture for all integers in the range [1, n] (see Listing 9.1 for the
checking routine). Note that this program is extremely simple and fulfills the optimal prereq-
uisites for a significant speedup through register allocation: due to the small number of local
variables no spills are introduced, most of the time is spent in the iteration loop minimizing the
function call overhead. The expressions are all very short, leading to a high load/store overhead
in the original TCC.

Listing 9.1 Collatz Conjecture Check, C-Code
1 int collatz(int an)
2 {
3 int iters = 1;
4

5 while (an != 1) {
6 /* odd number, a[n] = a[n-1]*3 + 1 */
7 if (an & 1) {
8 an *= 3;
9 an += 1;

10 }
11 else /* even number, a[n] = a[n-1]/2 */
12 an >>= 1;
13

14 iters++;
15 }
16

17 return iters;
18 }

Test case: We call the benchmark with n = 2000000 (two million.)

Result: The comparison of the generated functions for original TCC and our improved ver-
sion is shown in listings 9.1 and 9.2 each. The register allocated code executes in 5.18s compared
to 10.58s with the original code, meaning a speed-up of more than 100%. Examining the loop

4see http://mathworld.wolfram.com/CollatzProblem.html

http://mathworld.wolfram.com/CollatzProblem.html
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00000000 <collatz>:
0: mov ip, sp
4: push {r0, r1}
8: push {fp, ip, lr}
c: mov fp, sp

10: sub sp, fp, #4
14: mov r0, #1
18: str r0, [fp, #-4]
1c: ldr r0, [fp, #12]
20: cmp r0, #1
24: beq 78 <collatz+0x78>
28: ldr r0, [fp, #12]
2c: and r0, r0, #1
30: teq r0, #0
34: beq 58 <collatz+0x58>
38: ldr r0, [fp, #12]
3c: mov r1, #3
40: mul r0, r1, r0
44: str r0, [fp, #12]
48: ldr r0, [fp, #12]
4c: add r0, r0, #1
50: str r0, [fp, #12]
54: b 64 <collatz+0x64>
58: ldr r0, [fp, #12]
5c: lsr r0, r0, #1
60: str r0, [fp, #12]
64: ldr r0, [fp, #-4]
68: mov r1, r0
6c: add r0, r0, #1
70: str r0, [fp, #-4]
74: b 1c <collatz+0x1c>
78: ldr r0, [fp, #-4]
7c: nop
80: ldm fp, {fp, sp, pc}

Figure 9.1: collatz(), tcc

00000000 <collatz>:
0: push {r4, r5, lr}
4: mov r4, #1
8: cmp r0, #1
c: beq 3c <collatz+0x3c>
10: and r5, r0, #1
14: teq r5, #0
18: beq 2c <collatz+0x2c>
1c: mov lr, #3
20: mul r0, lr, r0
24: add r0, r0, #1
28: b 30 <collatz+0x30>
2c: lsr r0, r0, #1
30: mov r5, r4
34: add r4, r5, #1
38: b 8 <collatz+0x8>
3c: mov r0, r4
40: pop {r4, r5, pc}

Figure 9.2: collatz(), tccls
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instr. type tcc tccls
#loads 4 0
#stores 2 0
#branches 3 3
#data-proc. 6 6
#total 15 9 (-40%)

Table 9.1: instruction count for loop itera-
tion, “even” case

instr. type tcc tccls
#loads 5 0
#stores 3 0
#branches 4 4
#data-proc. 8 8
#total 20 12 (-40%)

Table 9.2: instruction count for loop itera-
tion, “odd” case

body, we see that for example the if-block is translated to 7 instructions (address range 38–
50), including two load/store-pairs, where the extended TCC yields only 3 instructions (address
range 1C–24), without any loads or stores.

The instruction count for one loop iteration for both cases (even number and odd number) is
shown in tables 9.1 and 9.2, respectively. In both cases, the instruction count is reduced by 40%.

Assuming that each instruction type takes the same amount of time and the time spent outside
this loop is negligible, this would mean a speedup of 1

1−0.4 ≈ 67%. We come close to the actual
measured speedup by assuming the execution time of load/store instructions corresponds to 1.5
data-processing instructions. Note that we have to assume to always have data cache hits here
– on scenarios with lots of memory accesses in-between, load/store instructions may take much
longer! Nevertheless, we can safely say that we save at least 1.5 instructions for each variable
access that is register allocated on this concrete target.

9.3 MiBench Benchmarks

MiBench is a freely available embedded benchmark suite made up by the EECS Department of
the University of Michigan.[GRE+01] It contains 35 embedded applications which are claimed
by the authors to be commercially representative. The application set is divided up into the fol-
lowing six suites, where each targets a specific area of the embedded market: Automotive and
Industrial Control, Consumer Devices, Office Automation, Networking, Security and Telecom-
munications.

Due to the lack of floating point support and other language restrictions for our proof-of-
concept (see section 4.3) the set of possible applications to choose for benchmarking was very
limited. We picked five benchmarks, one of each suite except of the category “consumer de-
vices”, where every application contains heavy floating-point calculations needed for image or
audio processing.

BitCount

This simple benchmark is from the “Automotive” suite and counts the number of bits in an
integer with four different algorithms:
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• (⇒ bitcount1) “Optimized 1 bit/loop counter”: a loop which executes exactly the
number of bit times, working through bit-manipulations

• (⇒ bitcount2) “Ratko’s mystery algorithm”: computes without a loop, but successive
bit-mask and shift operations

• (⇒ bitcount3) “Recursive bit count by nibbles”: recursive version of bitcount4

• (⇒ bitcount4) “Non-recursive bit count by nibbles”: computes by repeatedly access-
ing a prestored “bits per nibble” lookup table

Adaptions in source code: None.

Test case: We use the test module (bitcnts.c) that is shipped with the benchmark. It
takes a number n as command line argument and measures the execution time for counting bits
for n numbers of a fixed sequence. This is done seperately for each of the four bit counting
methods. We execute the program with n = 20000000 (twenty million).

Note that for a fair comparison, only the bitcount modules (bitcnt_1.c, bitcnt_2.c,
bitcnt_3.c and bitcnt_4.c) are compiled with different compilers/options, but the test
module is always compiled with the same compiler. This way we ensure that the execution time
differences are solely caused by the bit counting routines.

SHA1

Belonging to the “Security” suite, this benchmark calculates the SHA15 hash for a given input
file.

Adaptions in source code: None.

Test case: We execute the application with the source code archive of gcc 4.5.0 (.tar.gz
format) 6 which is ≈ 82 MB in size.

String Search

This application is part of the “Office” suite and contains “string searching” algorithms, i.e. rou-
tines that find the place of a given string (the pattern) within another given, larger string. The
search is done with the classical algorithms Pratt-Boyer-Moore (⇒ strsearch1) and Boyer-
Moore-Horspool (⇒ strsearch2), both searching case-sensitive.

Adaptions in source code: The original source code encodes the test strings directly within
the file, which isn’t very flexible. The test data was too small to yield meaningful execution time
result, as the larger string was never longer than 80 characters. We extended the test program to

5SHA1 is for “Secure Hash Algorithm 1” and is described in RFC 3174, see http://tools.ietf.org/
html/rfc3174

6available at ftp://gd.tuwien.ac.at/gnu/gcc/releases/gcc-4.5.0/gcc-4.5.0.tar.gz

http://tools.ietf.org/html/rfc3174
http://tools.ietf.org/html/rfc3174
ftp://gd.tuwien.ac.at/gnu/gcc/releases/gcc-4.5.0/gcc-4.5.0.tar.gz
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take a patterns file and a search text file as command line arguments. Each line of the patterns
file is stored into an array of strings, and the content of the search text file is stored into a single
large string. Each pattern is then searched within the large string.

Test case: We search the text from James Joyce’s Ullyses7, having about 1.5 MB in size, for
a list of 458 “bad words”8.

ADPCM

ADPCM is for “Adaptive differential pulse-code modulation” and denotes a audio signal en-
coding method. The benchmark belongs to the “Telecommunications” suite and comes with an
encoding (⇒ adpcm encode) and a decoding (⇒ adpcm decode) application, each taking
a file as input that is given on the command line and writing the result to the standard output.

Adaptions in source code: None.

Test case: The applications are executed with the supplied test input files, which are about
25 MB (for encoding) and 6 MB (for decoding) in size each.

Dijkstra

As the name suggests, this benchmark from the “Network” suite implements the graph search al-
gorithm by Dijkstra, which solves the shortest path problem for a given graph with non-negative
edge path costs. The graph is provided as distance matrix in a text file which is supplied as
command line argument. The program calculates the shortest path for 100 vertex pairs.

Adaptions in source code: In the core function dijkstra(), all accessed variables (ex-
cept the parameters) are declared as global variables, though they are not used in any other
function. This means that we don’t have any register allocation candidates (besides of temporary
values) and the speedup is moderate. We declared the variables (i, ch, iPrev, iNode, iCost,
iDist) as local and split up this benchmark in two subtests, the supplied code (⇒ dijkstra orig)
and the modified code with more register allocation candidates (⇒ dijkstra mod).

Test case: The test is performed with the supplied test graph, consisting of 100 nodes.

7available from Project Gutenberg: http://www.gutenberg.org/ebooks/4300.txt.utf-8
8available at http://urbanoalvarez.es/blog/2008/04/04/bad-words-list/

http://www.gutenberg.org/ebooks/4300.txt.utf-8
http://urbanoalvarez.es/blog/2008/04/04/bad-words-list/
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9.4 Complex Benchmark

bzip2

As largest and most complex benchmark we use an early version of the open-source lossless
data compressing tool bzip2, written by Julian Seward.9 It comes as single source file with
more than 4000 lines of code involving operations like CRC calculation, Huffman coding rou-
tines, sorting algorithms etc. The tool can compress (⇒ bzip2 inflate) and decompress
(⇒ bzip2 deflate) files as well as test the integrity of compressed files (⇒ bzip2 test).

Adaptions in source code: In some verbose (-v) outputs, floating point numbers are used
for the calculation of statistical values. As the proof-of-concept can’t handle floating points, we
commented those out – the benchmarked functionality of the tool is not affected by that. We
also commented out the abortion if an output file already exists. This enables us to use our
benchmark script which performs the same command repeatedly.

Test case: The compression is applied on the source code archive of busybox 0.60.5 (.tar
format) 10 which is≈ 2900 KB in size. The decompression and test sub-benchmarks are applied
on the result from the compression.

9.5 Run-Time Evaluation

Table 9.3 lists the execution-time results for each benchmark.
The performance of code generated by tcc and gcc -O0 is about equal. In three out of

our 15 test cases, tcc-code performs even slightly better.
The speedup for each benchmark of tccls compared to the original tcc is shown as bar

chart in Figure 9.5 (p. 62). On average, we have a performance improvement of ≈ 32.6%.
The largest speedups are achieved on the benchmarks bitcount1 (+132.27%), collatz
(+104.64%) and adpcm code (+62.10%). Looking at those test cases, we find some common
properties that advantage a code quality improvement through our global register allocator:

• generally: a high usage rate of register allocation candidates; that is, in our implementa-
tion, local variables and parameters in leaf functions

• a large amount of short expressions (e.g. x++; or y += n;) that would lead to a high
density of additional load/store pairs without register allocation

• if the number of register allocation candidates exceeds R: many local variables with short
live ranges (not spanning across loops) to minimize the need for spilling

9see http://www.bzip.org/; the version used for benchmarking is available at http://gd.tuwien.
ac.at/gnu/sourceware/bzip2/v01pl2/bzip2-0.1pl2.tar.gz

10available at http://www.busybox.net/downloads/busybox-0.60.5.tar.bz2 (compressed)

http://www.bzip.org/
http://gd.tuwien.ac.at/gnu/sourceware/bzip2/v01pl2/bzip2-0.1pl2.tar.gz
http://gd.tuwien.ac.at/gnu/sourceware/bzip2/v01pl2/bzip2-0.1pl2.tar.gz
http://www.busybox.net/downloads/busybox-0.60.5.tar.bz2
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Benchmark tcc tccls speedup1 gcc -O0 gcc -O1 speedup2

collatz 10.58 5.17 ⇒ +104.64% 10.44 2.87 ⇒ +80.14%
bitcount1 10.15 4.37 ⇒ +132.27% 10.52 3.10 ⇒ +40.97%
bitcount2 3.59 2.77 ⇒+29.60% 3.44 2.14 ⇒ +29.44%
bitcount3 11.66 11.20 ⇒ +4.11% 11.91 6.43 ⇒ +74.18%
bitcount4 4.75 4.29 ⇒ +10.72% 4.48 2.57 ⇒ +66.93%
sha1 26.00 20.59 ⇒ +26.27% 24.79 6.65 ⇒ +209.62%
strsearch PBM 15.22 13.30 ⇒ +14.43% 13.27 11.36 ⇒ +17.08%
strsearch BMH 13.25 12.20 ⇒ +8.61% 13.46 10.73 ⇒ +13.70%
adpcm code 4.62 2.85 ⇒ +62.10% 4.41 1.63 ⇒ +74.85%
adpcm decode 3.58 2.81 ⇒ +27.40% 3.48 1.18 ⇒ +138.14%
dijkstra orig. 1.72 1.69 ⇒ +1.77% 1.50 0.75 ⇒ +125.33%
dijkstra mod. 1.26 0.95 ⇒ +32.63% 1.09 0.57 ⇒ +66.67%
bzip2 inflate 18.51 16.66 ⇒ +11.10% 17.62 10.36 ⇒ +60.81%
bzip2 deflate 5.04 4.84 ⇒ +4.13% 4.76 3.47 ⇒ +39.48%
bzip2 test 7.18 6.04 ⇒ +18.87% 7.09 4.50 ⇒ +34.22%
average MiBench ⇒ +31.81% ⇒ +77.90%
average all ⇒ +32.58% ⇒ +71.44%
1 speedup of tccls⇒ tcc
2 speedup of gcc -O1⇒ tccls

Table 9.3: Summary of run-time benchmarks

The worst speedup is achieved with the test case dijkstra orig. (+1.77%). In this
code, all variables accessed in the core function (dijkstra()) are declared as global, hence
we simply don’t have any register allocation candidates available. We modified the benchmark
(dijkstra mod.) and moved declared all those variables (which wouldn’t be used in other
functions anyway) as local, leading to a significant speedup of +32.63%.

The bitcount algorithm bitcount3 uses a lookup-table for the calculations, has only one
local variable and even works with recursion, meaning that we don’t have a leaf function. Hence
the speedup is also rather decent with +4.11%. All other MiBench test cases yield a speedup of
at least +8.6%, the average speedup of all MiBench applications is +31.81%.

The average speedup of the complex benchmark test cases (bzip2 inflate, deflate
and test) is +11.37%, which is still significant, considering that this application is very memory-
intensive and primarily works with lookup-tables and consists of complex expressions mostly
with operands in memory.
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tccls vs. gcc -O1

There’s a significant difference in the quality of the code generated by tccls and gcc -O1.
As Table 9.3 shows, gcc with optimization performs clearly better than our implementation
with a speedup of almost 80% in average – some benchmark execute in less than half the time
than tccls (+ >100%), in the one extreme case of sha1 the speedup is even more than 200%.

The reason for this is the fact that gcc performs by far more optimizations than global register
allocation. The following differences occur in gcc-optimized code compared to our tccls-
code:

• usage of combined shift instructions for data-processing instructions

• usage of conditional instructions for small if/else-blocks to save branch instructions

• loading of large 32-bit constants: gcc-code stores constants at the end of a function and
loads them with a single load instruction; tcc(ls)-code stores constants in-between the
code and hence needs an extra branch instruction to continue the execution flow after
loading

Taking again the simple Collatz conjecture example, Figures 9.3 and 9.4 show the listings the
code for the function collatz(), generated by tccls and gcc -O1 each.

00000000 <collatz>:
0: push {r4, r5, lr}
4: mov r4, #1
8: cmp r0, #1
c: beq 3c <collatz+0x3c>
10: and r5, r0, #1
14: teq r5, #0
18: beq 2c <collatz+0x2c>
1c: mov lr, #3
20: mul r0, lr, r0
24: add r0, r0, #1
28: b 30 <collatz+0x30>
2c: lsr r0, r0, #1
30: mov r5, r4
34: add r4, r5, #1
38: b 8 <collatz+0x8>
3c: mov r0, r4
40: pop {r4, r5, pc}

Figure 9.3: collatz(), tccls

00000000 <collatz>:
0: mov r3, r0
4: cmp r0, #1
8: beq 30 <collatz+0x30>
c: mov r0, #1

10: tst r3, #1
14: addne r3, r3, r3, lsl #1
18: addne r3, r3, #1
1c: lsreq r3, r3, #1
20: add r0, r0, #1
24: cmp r3, #1
28: bne 10 <collatz+0x10>
2c: mov pc, lr
30: mov r0, #1
34: mov pc, lr

Figure 9.4: collatz(), gcc -O1
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9.6 Compile-Time Evaluation

Table 9.4 lists the compilation times for each benchmark. We intentionally didn’t include the
“collatz” and “bitcount” as those, each consisting of only a single small function, were compiled
too fast to yield meaningful compilation time results.

Benchmark tcc tccls slowdown gcc -O0 slowdown gcc -O1 slowdown
sha1 0.11 0.12 ⇒ ×1.09 1.41 ⇒ ×12.82 1.97 ⇒ ×17.91
strsearch 0.09 0.09 ⇒ ×1.00 1.18 ⇒ ×13.11 1.75 ⇒ ×19.44
adpcm 0.09 0.10 ⇒ ×1.11 1.15 ⇒ ×12.78 1.38 ⇒ ×15.33
dijkstra 0.07 0.07 ⇒ ×1.00 0.89 ⇒ ×12.71 1.22 ⇒ ×17.43
bzip2 0.26 0.30 ⇒ ×1.15 7.03 ⇒ ×27.04 20.50 ⇒ ×78.85
average ⇒ ×1.07 ⇒ ×15.69 ⇒ ×31.59

Table 9.4: Summary of compile-time benchmarks (The values in the “slowdown” columns are
all related to the original tcc)

The results show that tccls is almost as fast as tcc – even with the complex benchmark
of bzip2, the slowdown is only 1.15. Consequently, the goal of keeping the property of high
compilation speed of tcc with the implementation of the global register allocator is clearly
achieved. Our optimized implementation is still at least twelve times faster than gcc without
any optimization.

9.7 Implementation Effort

Table 9.5 shows the implementation effort quantified by lines of code and the estimated relative
time exposure for each of the four phases.

Phase LOC rel. time exposure
IR code generation 400 45%
Liveness analysis 400 15%
Linear Scan register allocation 200 5%
Code generation 500 35%
total 1500 100%

Table 9.5: Rough implementation effort of the tccls extension

Designing and implementing an intermediate representation for TCC and generating correct
and fast target code out of the register-allocated listing were clearly the most time-consuming
implementation tasks. In contrast, register allocation with linear scan was surprisingly simple
and easy to integrate, and for the liveness analysis we intentionally developed a method that was
simple and thus straight-forward to implement too.



CHAPTER 10
Conclusions and Future Work

Within this thesis we have implemented a proof-of-concept global register allocator for TCC
using the simple but yet very promising linear scan approach. We designed an intermediate
representation instruction set close to that of the target architecture (ARM) which abstracts the
concrete destination for register allocation candidates with virtual registers. For keeping the high
execution speed of TCC, we developed a simple and fast live variable analysis algorithm which
yields conservative intervals but performs much faster than usual data-flow analysis techniques.
The code generator implements some optimizations regarding prolog/epilog and faster argument
access for leaf functions.

The quality of the produced code (⇒ run-time speed) has improved by more than 32% on
average, while the featuring property of the compiler of being fast (⇒ compile-time speed) is
still met – our optimizing compiler executes still more than ten times faster than gcc without
any optimization.

The results support the original claim that linear scan is a very attractive option for systems
where manpower lacks and compile-time is an important goal.

Though we have no comparison to the efficiency other global register allocation strategies
like graph coloring for this compiler, we are convinced that the trade-off between implementa-
tion effort/compile-time speed and run-time speed is best met by linear scan.

10.1 Further Implementation

For keeping the implementation effort low, especially considering the code generation part, we
have decided to use simple approaches in many cases, sacrificing target code quality. The run-
time speed could be further enhanced by the following improvements:

• Also treat function parameters as register allocation candidates – currently all parameters
are accessed on the stack, except for leaf functions, where the first four arguments are
accessed in R0–R3

64
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• Also use R0–R3 for register allocation, on sections where no function calls occur – cur-
rently only R4–R10 are used for substitution to virtual registers, limiting the number of
physical registers to 7

• Use a more sophisticated liveness analysis – currently the liveness calculation is very
naive, leading to overly conservative live ranges and thus to many spills

• Implement other optimizations for TCC that are now possible with the existence of a IR
generation pass, for example: constant propagation, common subexpression elimination,
function inlining

10.2 Future Projects

Based on this thesis, several projects would be interesting to do to support further research about
global register allocation:

• For this concrete target: implement a kernel module which accesses the hardware coun-
ters, to perform a more detailled analysis of the generated code with the perf tool

• Port the implementation to other target architectures (e.g. x86, x86-64) and analyze how
different architectural properties (e.g. RISC or CISC architecture, number of available
registers, cache etc.) and code generation influence the run-time performance of our im-
plementation

• Implement a global register allocator based on graph coloring (also needs data-flow anal-
ysis) and compare the results to linear scan



APPENDIX A
The ARM Architecture

A.1 History and Overview

The ARM architecture originated within Acorn Computers Ltd., a British computer company
founded in 1978. It was best known for the BBC Micro, an 8-bit home computer similar to
the Commodore 64 that dominated the UK educational computer market in the 1980s and early
1990s.1

When the company planned the successor to this series, the designers were looking for a
replacement for the 6502 processor. Since none of the 16-bit architectures available at that time
were satisfying, they decided to design their own 32-bit processor, inspired by the Berkeley
RISC [SP82] project. The Acorn RISC Machine 2, released in 1987 as ARM23, was one of the
world’s first commercial RISC processors.

Later, when other companies became interested in the processor, Acorn’s processor design
team split off and together with Apple Computer and VLSI Technology, founded Advanced RISC
Machines Ltd.4 in 1990. It was later renamed to ARM Holdings.

The company is designing the famous ARM family of RISC processor cores, which is now
extremely popular in embedded mobile systems – 95% of the world’s smart phones contain
at least one ARM processor. This success is due to the reduced cost, heat and power usage
compared to more complex designs. Other uses include digital cameras, automotive systems
and gaming consoles.

The processors are not manifactured by ARM Holding itself, but rather is based on an IP
(Intellectual Property) business model: silicon is produced only by companies who license the
ARM processor designs.

Basic properties of ARM processors are as follows:
1see http://www.telegraph.co.uk/finance/newsbysector/epic/arm/8243162/

History-of-ARM-from-Acorn-to-Apple.html
2the original meaning of ARM
3ARM1 was a prototype which was never released
4the meaning of the acronym ARM was changed accordingly
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• Load/Store architecture

• uniform register set (32-bit)

• fixed size instruction set (32-bit)

A.2 Register File

In total, 37 registers physically exist in ARM, all 32 bits long. At one time, at most 16 of these
registers are accessible (R0-R15), plus at most two program status registers (CPSR and SPSR,
current and saved), depending on the mode the processor is in. We assume to only operate in
user and system modes here, both having the same register set visible. Other modes are used for
interrupts, exception handling and memory access violations.

Though all of the 16 registers can be used as operands in most instructions (encoded in a
4-bit field), two of them have special purposes defined by hardware:

• R15 = PC: Program Counter. It can also be used in most instructions to get the address of
the current instruction plus eight, which is two instructions after5. All instructions must
be word-aligned, hence the PC resides in bits 32–2 and bits 1–0 are undefined.

• R14 = LR: Link Register. After a Branch and Link (BL) instruction, this register holds
the address of the next instruction, that is the return address for a subroutine call. If the
register is saved/restored on entry/return of functions, it can be used as general-purpose
register in-between.

Since one of the 16 registers, R15, can not be used as a data store, it is often stated that ARM
has 15 GPRs available in user/system mode. The uses of those registers are entirely defined by
software. The standard uses and the rules regarding procedure calls (the calling conventions),
defined by ARM’s EABI, are covered in section A.4.

The CPSR contains four condition code flags (Negative, Zero, Carry and oVerflow) and the
current processor mode. The flags can be set as results of arithmetical and logical operations.

A.3 Instruction Set

In the following, we will describe the general structure of the ARM instruction set and give an
overview of all instructions that are used by TCC’s code generator.

While the newest ISA version available is ARMv86, TCC generates ARMv4 code7. Modern
ARM processors also include other instruction sets, like THUMB for a compact 16-bit wide
alternative instruction encoding, NEON for SIMD (Single Instruction Multiple Data) processing
or VFP for floating-point processing. We only use the core 32-bit ARM instruction set.

5this offset is caused by instruction prefetching
6ARMv8-A, adding a 64-bit architecture, has been first implemented by Apple in the Apple A7 chip, part of the

iPhone 5s, in the end of 2013
7note that all architectures up to ARMv3 are now obsolete
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Code Flags Suffix Description
0000 Z set EQ Equal
0001 Z not set NE Not equal
1010 N == V GE Greater than or equal (signed)
1011 N != V LT Less than (signed)
1100 Z not set && N == V GT Greater than (signed)
1111 Z set || N != V LE Less than or equal (signed)
1110 any AL Always (default)

Table A.1: Some condition codes for ARM instructions

More details about the instruction set for various versions can be found in the ARM-ARM
(ARM Architecture Reference Manual). [Sea00]

General Organisation

ARM instructions have a three-address format, consisting of two source registers and one desti-
nation register. The commonly used assembler syntax is as follows:

<op>{cond}{flags} Rd, Rn, Operand2

• <op>: Three-letter mnemonic representing the opcode, e.g. SUB, MOV

• {cond}: Optional two-letter condition code (see next subsection below), e.g. EQ, NE

• {flags}: Optional additional flags, e.g. S

• Rd: Destination register

• Rn: First source register

• Operand2: Flexible second operand; may be register or immediate value

Note that this is the general format and some instructions deviate from it, for example the MOV
instruction omits the first source registern Rn.

Condition Code

All instructions contain a 4-bit wide condition field (bits 31–28) that defines the condition under
which an instruction is to be executed. Table A.1 lists some conditions with the corresponding
assembler mnemonics and meanings. TCC uses the condition code primarily for implementing
conditional branches.
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Code Mnemonic Description
1101 MOV Rd := Op2
1111 MVN Rd := NOT Op2
0000 AND Rd := Op1 AND Op2
0001 EOR Rd := Op1 EOR Op2
1100 ORR Rd := Op1 OR Op2
0010 SUB Rd := Op1 - Op2
0011 RSB Rd := Op2 - Op1
0100 ADD Rd := Op1 + Op2
1000 TST set condition codes on Op1 AND Op2
1001 TEQ set condition codes on Op1 EOR Op2
1010 CMP set condition codes on Op1 - Op2
1011 CMN set condition codes on Op1 + Op2

Table A.2: ARM Data-processing operations

Data-Processing Instructions

The majority of the operations we use fall into the category of data processing instructions.
Since we have a Load/Store-architecture, operands can only be registers or immediate values.
The instruction encoding is as follows:

• Cond: condition code, see above

• I: 0→ Operand2 is a register, 1→ Operand2 is an immediate value

• OpCode: defines the operation, see below

• S: 0→ do not modify condition codes, 1→ set condition codes

• Rd: destination register

• Rn: first operand register

• Operand2: depending on I, contains a register together with shifting properties, or an
immediate value with shifting properties

Table A.2 lists all opcodes that are used in TCC’s code generator together with its semantics.
A special instruction that deviates from the data-processing instruction encoding, but log-

ically also belongs to the same category, is the MUL operation. It multiplies two signed or
unsigned 32-bit values and writes the least significant 32 bits of the result to the destination
register.

There is no division instruction for the ARMv4 architecture, thus it has to be emulated by
software.8

8ARM EABI defines the functions __aeabi_idivmod and __aeabi_udivmod (for signed and unsigned
division/modulo calculation) for this purpose, see chapter 5
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Load and Store Instructions

The ARM data sheet defines two types of instructions that can read or write to memory: Single
Data Transfer instructions (LDR, STR) and Block Data Transfer instructions (LDM, STM). For
practical reasons, we only associate the former group to “load/store instructions” in this thesis,
since the latter group is mostly used to save/restore registers on the stack – it is described below
in the subsection “stack operations”.

The LDR instruction is used to to load a single word or byte of data (in case of a byte, the
mnemonic is LDRB). Accordingly, the STR instruction is used to store a single word or byte of
data (in the latter case, the mnemonic is STRB).

The memory address is calculated by adding or subtracting (depending on the Up/Down bit)
a base register and an offset. The offset can again be a register or a 12-bit immediate value. The
offset register can optionally be shifted by an 8-bit value, however this is not used in tcc.

There are also special instructions for halfword and signed data transfer. These are used to
load/store 16-bit values or to load sign-extended bytes or halfwords of data (corresponding to
the short data type and the signed modifier in C).

Branch Instructions

There are only two types of branch instructions in ARMv4: Branch (B) and Branch with Link
(BL). Both contain a 24-bit offset (signed two’s complement) that will be shifted left two bits,
signed extended two 32-bits and add to the PC. This way, relative branches in the range of +/-
32MB (= 226−1) are possible.

The Branch with Link instruction additionally saves the address of the instruction following
in R14, (the link register). This is obviously used to be for function calls – the function can then
simply return to the caller by moving R14 into R15, the program counter9 (given that the link
register isn’t modified in-between).

Note that for conditional branches there is no need for seperate instructions, as simply the
condition code is used, yielding the mnemonics BEQ, BNE, BGT, BLT, BGE, BLE.

Stack Operations

Unlike other architectures, ARM doesn’t have dedicated stack operations (like PUSH and POP
for Intel x86 or 8051), but rather has more general and flexible instructions that can be used
for that purpose. Those so-called Block Data Transfer instructions load (LDM) or store (STM)
any subset of the currently visible registers. Though these instructions are also convenient for
moving large data blocks around in main memory, TCC uses them solely for saving and restoring
context on the stack.

The syntax is as follows:

LDM{cond}<FD|ED|FA|EA|IA|IB|DA|DB> Rn{!},<Rlist>
STM{cond}<FD|ED|FA|EA|IA|IB|DA|DB> Rn{!},<Rlist>

9there are no special instructions for indirect branches in ARM, but simply ordinary load or data-processing
instructions with R15 as destination operand are used
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The two-letter mnemonic following the condition specifies the addressing mode.
The ARM stack according to the Procedure Call Standard (see section A.4 below) is full-

descending, meaning that the pointer points to the location in which the last item was stored (full)
and the stack grows from higher to lower memory addresses (descending), that is, downwards.10

Hence we will only need the FD addressing mode. Rn is the base registers, it contains the starting
address of the block transfer. If the ! is present (that is, the Write-back bit W is set), the base
registers is updated after the transfer and points to the next relevant address. The register list
Rlist specifies the subset of all registers (R0-R15) which should be transferred.

Most ARM assemblers as well as the disassembly listing received by objdump -d are
supporting the following pseudo-instructions for better readability.

pseudo-instruction actual instruction
PUSH [reg. list] STMDB SP!, [reg. list]
POP [reg. list] LDMIA SP!, [reg. list]

A.4 Procedure Call Standard (EABI)

The currently used ABI (Application Binary Interface) for ARM, EABI211,12 (published in 2005)
defines standard conventions that object files respectively executable files have to follow. This
section covers the most important part of ARM EABI2 in regards of register allocation, which is
the calling conventions, named Procedure Call Standard13(AAPCS14) in the ARM documents.

The base standard defines fixed roles for some of the core registers, as listed in table A.3.
The pre-assigned registers R12 and R13 have the following meaning:

• R12 = IP: may be used by a linker as a scratch register

• R13 = SP: Stack Pointer

Note that the purpose of registers R14 and R15 are defined by hardware and were already
discussed in section A.2 above. The definitive register assignment used for our code generator
is described in chapter 7.

Registers R0-R3, R12 and R14 are caller-saved registers, i.e. they need to be saved by the
caller prior to calling subroutines.

Registers R4-R11 and R13 are callee-saved registers, i.e. they need to be preserved by the
subroutine. R4-R11 are also sometimes called variable registers.

Function parameters are passed in registers R0-R3. If there are more than four parameters,
those are stored on the stack. Note that the stack must be at all times aligned to a word boundary
(SP mod 4 = 0). On all external intefaces (that is basically, before functions are called) even

10other supported stack types are full-ascending, empty-descending and empty-ascending
11the ’E’ is for embedded
12see http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ihi0036b/

index.html
13see http://infocenter.arm.com/help/topic/com.arm.doc.ihi0042e/IHI0042E_

aapcs.pdf
14note that APCS is a different standard which is obsolete

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ihi0036b/index.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ihi0036b/index.html
http://infocenter.arm.com/help/topic/com.arm.doc.ihi0042e/IHI0042E_aapcs.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.ihi0042e/IHI0042E_aapcs.pdf


APPENDIX A. THE ARM ARCHITECTURE 72

Register Alternative Name Description
R0 Argument 1 / Return value
R1 Argument 2 / Return value
R2 Argument 3
R3 Argument 4
R4-R11 Variables
R12 IP (Intra-Procedure-call scratch register)
R13 SP (Stack Pointer)
R14 LR (Link Register)
R15 PC (Program Counter)

Table A.3: AAPCS core register mapping

a double-word alignment of the stack pointer (SP mod 8 = 0) is required for EABI compliant
code.

Return values of functions are stored in registers R0 and R1. Our code generator will only
return values in register R0 – R1 would be used for data types larger than 32-bit which we don’t
allow (see limitations in chapter 4).



APPENDIX B
The Raspberry Pi

The Raspberry Pi1 is a credit-card-sized single-board computer developed in the UK by the
Raspberry Pi Foundation, a charity which was founded in 2009. Its goal was to promote the
teaching of basic computer science in schools, as the declining skills of numbers and skills of
applying students became a concern for the team of the University of Cambridge Computer
Laboratory. With the existence of a tiny and affordable computer, children should get motivated
for programming in an early age.

The following figure shows the layout of the Rasperry Pi with its components2:

1see http://www.raspberrypi.org
2Image source: http://www.raspberrypi.org/help/faqs/
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The Raspberry Pi has the following specifications for the Modell B, 3 which was used for
this thesis:

• CPU: ARM1176JZF-S (ARMv6 architecture), 700 MHz

• GPU: Broadcom VideoCore IV, 250 MHz

• RAM: 512 MB (shared with GPU)

• Onboard storage: SD/MMC/SDIO card slot

• 2 USB ports, 10/100 Ethernet port

• Composite RCA (PAL and NTSC) video output, HDMI output (resolutions up to 1920x1200)

• 3.5mm jack audio output

• Low-level peripherals: 8xGPIO, UART, I2C bus, SPI bus

• Power ratings: 700 mA (3.5 W)

CPU, GPU and RAM are all part of the Broadcom BCM2835 system on a chip. As operating
system, linux distributions are used, predominantly a Debian variant called “Raspbian”.

3Modell A is cheaper, but has only 256 MB RAM, no ethernet port and only one USB port
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Implementation Code Snippets

C.1 IR Generation (tccgen.c / tccir.c)

Listing C.1 Assignment of virtual register to local variables
1 ST_FUNC Sym *sym_push(int v, CType *type, int r, int c)
2 {
3 Sym *s;
4 ...
5 int vreg = -1;
6

7 if (((r & VT_VALMASK) == VT_LOCAL) && (r & VT_LVAL) &&
8 ((type->t & VT_BTYPE) != VT_STRUCT))
9 vreg = IR_GetVregVar();

10

11 ... /* after the other assignments to the "s" fields */
12 s->vreg = vreg;
13 ...
14 }

75
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Listing C.2 IR code generation for binary operations
1 static void ir_gen_opi(int op)
2 {
3 int irop;
4

5 switch (op) { /* map token operation code to IR operation code */
6 case ’+’: irop = IR_OP_ADD; break;
7 case ’-’: irop = IR_OP_SUB; break;
8 ...
9 case TOK_SAR: irop = IR_OP_SAR; break;

10

11 /* ... */
12 }
13

14 SValue dest;
15 memset(&dest, 0, sizeof(dest));
16 dest.vreg = IR_GetVregTemp();
17 dest.type.t = vtop[-1].type.t;
18 dest.r = 0;
19

20 IR_PutOp(irop, &vtop[-1], &vtop[0]);
21 vtop[-1].vreg = dest.vreg;
22 vtop[-1].r = 0;
23 vtop--;
24 }

Listing C.3 IR code generation for relational operators
1 static void ir_gen_opi(int op)
2 {
3 int irop;
4 ...
5

6 switch (op) { /* map token operation code to IR operation code */
7 ...
8 case TOK_EQ: case TOK_NE:
9 case TOK_LT: case TOK_GT: case TOK_LE: case TOK_GE:

10 case TOK_ULT: case TOK_UGT: case TOK_ULE: case TOK_UGE:
11 IR_PutOp(IR_OP_CMP, &vtop[-1], &vtop[0], NULL);
12 vtop--;
13 vtop->r = VT_CMP;
14 vtop->c.i = op;
15 return;
16

17 /* ... */
18 }
19 ...
20 }
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Listing C.4 IR code generation for division and modulo operators
1 static void ir_gen_opi(int op)
2 {
3 int irop;
4 ...
5

6 switch (op) { /* map token operation code to IR operation code */
7 ...
8 /* ARM platform specific: substitute / and % ops with function calls */
9 case ’/’:

10 case TOK_PDIV:
11 case TOK_UDIV:
12 case ’%’:
13 case TOK_UMOD:
14 memset(&num, 0, sizeof(num));
15 num.vreg = -1;
16 num.c.i = 1;
17 IR_PutOp(IR_OP_FUNCPARAM, &vtop[-1], &num, NULL);
18 num.c.i = 2;
19 IR_PutOp(IR_OP_FUNCPARAM, &vtop[0], &num, NULL);
20 if ((op == ’/’) || (op == TOK_PDIV))
21 func = TOK___divsi3;
22 else if (op == TOK_UDIV)
23 func = TOK___udivsi3;
24 else if (op == ’%’)
25 func = TOK___aeabi_idivmod;
26 else if (op == TOK_UMOD)
27 func = TOK___aeabi_uidivmod;
28 vpush_global_sym(&func_old_type, func);
29

30 SValue dest;
31 memset(&dest, 0, sizeof(dest));
32 dest.vreg = IR_GetVregTemp();
33 dest.type.t = vtop[-2].type.t;
34 dest.r = 0;
35 IR_PutOp(IR_OP_FUNCCALLVAL, &vtop[0], NULL, &dest);
36 vtop--; vtop--; vtop--;
37 vpushi(0);
38 vtop->r = 0;
39 vtop[0].vreg = dest.vreg;
40 return;
41

42 /* ... */
43 }
44 ...
45 }
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Listing C.5 IR code generation for first four parameters in function calls
1 ST_FUNC void unary(void)
2 {
3 ...
4 /* post operations */
5 while (1) {
6 if (tok == TOK_INC || tok == TOK_DEC) {
7 ....
8 } else ...
9 ...

10 } else if (tok == ’(’) {
11 ...
12 if (tok != ’)’) {
13 SValue num;
14 memset(&num, 0, sizeof(num));
15 num.vreg = -1;
16 for(;;) {
17 expr_eq();
18 gfunc_param_typed(s, sa);
19 if (nb_args < 4) {
20 IR_PutOp(IR_OP_FUNCPARAM, &vtop[0], &num, NULL);
21 vtop--;
22 }
23 nb_args++;
24 if (sa)
25 sa = sa->next;
26 if (tok == ’)’)
27 break;
28 skip(’,’);
29 }
30 }
31 if (sa)
32 tcc_error("too few arguments to function");
33 skip(’)’);
34 if (!nocode_wanted) {
35 }
36 } else ...
37 }
38 }
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Listing C.6 IR code generation for parameters 5+ and function calls
1 ST_FUNC void unary(void)
2 {
3 ...
4 /* post operations */
5 while (1) {
6 if (tok == TOK_INC || tok == TOK_DEC) {
7 ....
8 } else ...
9 ...

10 } else if (tok == ’(’) {
11 int ret_vreg = -1;
12 ...
13 if (!nocode_wanted) {
14 int j;
15 SValue num;
16 memset(&num, 0, sizeof(num));
17 num.vreg = -1;
18 if (nb_args > 4) {
19 for (j=0; j<nb_args-4; j++) {
20 num.c.i = nb_args-j;
21 IR_PutOp(IR_OP_FUNCPARAM, &vtop[0], &num, NULL);
22 vtop--;
23 }
24 }
25 if (vtop[0].type.t == VT_VOID) {
26 IR_PutOp(IR_OP_FUNCCALLVOID, &vtop[0], NULL, NULL);
27 } else {
28 SValue dest;
29 memset(&dest, 0, sizeof(dest));
30

31 dest.type.t = VT_INT;
32 dest.vreg = ret_vreg = IR_GetVregTemp();
33 IR_PutOp(IR_OP_FUNCCALLVAL, &vtop[0], NULL, &dest);
34 }
35 vtop--;
36 } else {
37 vtop -= (nb_args + 1);
38 }
39 /* return value */
40 vsetc(&ret.type, ret.r, &ret.c);
41 vtop->vreg = ret_vreg;
42 }
43 } else ...
44 }
45 }
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Listing C.7 Backpatching IR adaption example for the while statement
(original code is in comments, replacement code is indented)

1 static void block(int *bsym, int *csym, int *case_sym, int *def_sym,
2 int case_reg, int is_expr)
3 {
4 int a, b, c, d;
5 ...
6 if (tok == TOK_WHILE) {
7 next();
8 // d = ind; /* original */
9 d = IR_GetPC();

10 skip(’(’);
11 gexpr();
12 skip(’)’);
13 // a = gtst(1, 0); /* original */
14 a = ir_gtst(1, 0);
15 b = 0;
16 block(&a, &b, case_sym, def_sym, case_reg, 0);
17 // gjmp_addr(d); /* original */
18 SValue dest;
19 memset(&dest, 0, sizeof(dest));
20 dest.vreg = -1;
21 dest.c.i = d;
22 d = IR_PutOp(IR_OP_JMP, NULL, NULL, &dest);
23 // gsym(a); /* original */
24 IR_BackpatchToHere(a);
25 // gsym_addr(b, d); /* original */
26 IR_Backpatch(b, d);
27 } else if (...)
28 ...
29 }

Listing C.8 Backpatching functions for IR listing
1 void IR_Backpatch(int t, int target_addr) /* replacement for gsym_addr() */
2 {
3 SValue *cur;
4 while (t) {
5 cur = &(IR[t].dest);
6 t = cur->c.i; /* select next element in linked list */
7 cur->c.i = target_addr; /* patch entry */
8 }
9 }

10

11 void IR_BackpatchToHere(int t) /* replacement for gsym() */
12 {
13 IR_Backpatch(t, irpc);
14 }
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Listing C.9 Redundant move optimization
1 int IR_PutOp(int op, SValue *src1, SValue *src2, SValue *dest)
2 {
3 ...
4 /* optimization: eliminate redundant moves */
5 if ((op == IR_OP_ASS) && (IR_GetVregType(src1->vreg) == VREG_TEMPORARY) &&
6 (src1->vreg == IR[irpc-1].dest.vreg) &&
7 (src1->r & VT_LVAL) == 0) && (IR[irpc-1].op != IR_OP_FUNCCALLVAL))
8 IR[irpc-1].dest = IR[irpc].dest;
9 ....

10 }



APPENDIX C. IMPLEMENTATION CODE SNIPPETS 82

C.2 Liveness Analysis (tccir.c)

Listing C.10 Determination of basic liveness intervals during IR code generation
1 typedef struct {
2 int start;
3 int end;
4 } VRegInterval;
5

6 /* the basic interval for vreg X can be accessed with BaseIntervals[X] */
7 VRegInterval BaseIntervals[MAX_VARS+MAX_TEMPS+MAX_PARAMS];
8

9 int irpc;
10

11 int IR_PutOp(int op, SValue *src1, SValue *src2, SValue *dest)
12 {
13 ...
14 /* destination operand */
15 if (OP_USES_DEST(op)) {
16 ...
17 /* set basic interval start (first usage) */
18 if (VREG_VALID(dest->vreg) && BaseIntervals[dest->vreg].start == 0)
19 BaseIntervals[dest->vreg].start = irpc;
20 }
21 ...
22 /* first source operand */
23 if (OP_USES_SRC1(op)) {
24 ...
25 /* extend basic interval end (last usage) */
26 if (VREG_VALID(src1->vreg))
27 BaseIntervals[src1->vreg].end = irpc;
28 }
29 ...
30 /* second source operand */
31 if (OP_USES_SRC2(op)) {
32 ...
33 /* extend basic interval end (last usage) */
34 if (VREG_VALID(src2->vreg))
35 BaseIntervals[src2->vreg].end = irpc;
36 }
37 ...
38 }
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Listing C.11 Implementation of the simple liveness analysis, sets interval for given vreg
1 static int FindLiveInterval(int vreg, unsigned int *start,
2 unsigned int *end, int check_for_backwards_jumps)
3 {
4 int i, retval=0;
5 Quadruple* quad;
6

7 /* lookup basic intervals calculated during IR code generation */
8 *start = BaseIntervals[vreg].start;
9 *end = BaseIntervals[vreg].end;

10 if (*start > 0 && *end > 0)
11 retval = 1;
12

13 if (!check_for_backwards_jumps)
14 return retval;
15

16 /* extend interval end if there is a later backwards jump
17 into the the base liveness interval */
18 i = *end;
19 quad = &IR[i];
20 for (;i<irpc;i++) {
21 if ((quad->op == IR_OP_JMP || quad->op == IR_OP_BRANCHIF) &&
22 (quad->dest.c.i <= *end) && (quad->dest.c.i > *start)) {
23 *end = i;
24 }
25 quad++;
26 }
27 ...
28 return retval;
29 }
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Listing C.12 Solution for overcoming the simple liveness analysis restriction
1 static int FindLiveInterval(int vreg, unsigned int *start,
2 unsigned int *end, int check_for_backwards_jumps)
3 {
4 ...
5 /* special treatment for first definitions within conditional:
6 extend interval to outermost loop */
7 if (BaseIntervals[vreg].start_within_if) {
8 quad = &IR[irpc-1];
9 for (i=irpc-1; i>*start; i--) {

10 if ((quad->op == IR_OP_JMP || quad->op == IR_OP_BRANCHIF) &&
11 (quad->dest.c.i < *start)) {
12 *start = quad->dest.c.i;
13 if (i > *end) *end = i;
14 break;
15 }
16 quad--;
17 }
18 for (i=*start; i<*end; i++) {
19 quad = &IR[i];
20 if ((quad->op == IR_OP_JMP || quad->op == IR_OP_BRANCHIF) &&
21 (quad->dest.c.i < *start)) {
22 *start = quad->dest.c.i;
23 break;
24 }
25 }
26 }
27 ...
28 }
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C.3 Linear Scan Register Allocation (tccls.c)

Listing C.13 Register pool functions
1 int register_pool[K];
2

3 int RegisterPool_Get()
4 {
5 int i;
6 for (i=0; i<K; i++) {
7 if (register_pool[i]) {
8 register_pool = 0; /* remove register from pool */
9 return i;

10 }
11 }
12 tcc_error("no register available for allocator, should never happen!");
13 }
14

15 void RegisterPool_Add(int reg)
16 {
17 register_pool[reg] = 1;
18 }

Listing C.14 Expiring intervals that are not relevant any more (part of the LSRA algorithm)
1 static void ExpireOldIntervals(int i)
2 {
3 int j, removed_intervals=0;
4 static LiveInterval dirty = {0, 0, 0, 0, ~0};
5

6 /* "foreach interval j in active, in order of increasing end point" */
7 for (j=0; j<nActive; j++) {
8 if (ActiveSet[j]->end >= LiveIntervals[i].start)
9 break;

10 RegisterPool_Add(ActiveSet[j]->reg);
11 ActiveSet[j] = &dirty; /* mark as dirty for deletion through sort */
12 removed_intervals++;
13 }
14

15 /* remove entries from active set */
16 qsort(&ActiveSet[0], nActive, sizeof(ActiveSet[0]), licomp_endpoint);
17 nActive -= removed_intervals;
18 }
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Listing C.15 Spilling a certain interval (part of the LSRA algorithm)
1 static void SpillAtInterval(int i)
2 {
3 LiveInterval* Spill = ActiveSet[nActive-1]; /* "last interval in active" */
4 if (Spill->end > LiveIntervals[i].end) {
5 LiveIntervals[i].reg = Spill->reg;
6 Spill->loc = NewStackLocation();
7

8 ActiveSet[nActive-1] = &LiveIntervals[i];
9 /* sort by increasing end point */

10 qsort(&ActiveSet[0], nActive, sizeof(ActiveSet[0]), licomp_endpoint);
11 } else {
12 LiveIntervals[i].loc = NewStackLocation();
13 }
14 }

Listing C.16 The core function of the LSRA algorithm
1 void LS_RegisterAllocation()
2 {
3 int i;
4 for (i=0; i<R; i++)
5 register_pool[i] = 1; /* initially, all registers are free */
6

7 nActive = 0; /* empty active set */
8

9 /* sort live intervals in order of increasing starting point */
10 qsort(&LiveIntervals[0], nIntervals,
11 sizeof(LiveIntervals[0]), licomp_startpoint);
12

13 /* "foreach live interval, in order of increasing start point" */
14 for (i=0; i<nIntervals; i++) {
15 ExpireOldIntervals(i);
16 if (nActive == R) {
17 SpillAtInterval(i);
18 } else {
19 LiveIntervals[i].reg = RegisterPool_Get();
20 ActiveSet[nActive++] = &LiveIntervals[i];
21 /* sort by increasing end point */
22 qsort(&ActiveSet[0], nActive,
23 sizeof(ActiveSet[0]), licomp_endpoint);
24 }
25 }
26

27 ...
28 }
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C.4 Code Generation (tccir.c)

Listing C.17 Generation of Prologue and Epilogue code
1 static void GenProlog() {
2 int save_reg_list; /* criterion for optimizing fp and sp away */
3 int ignore_fp_sp = (leaffunc && num_params <= 4 && loc == 0);
4 save_reg_list = ((1 << regs_used)-1) << 4; /* save regs r4-r10 if needed */
5 save_reg_list |= 0x5800; /* save r11=fp, r12=ip (sp), r14=lr (ret. addr.) */
6 if (ignore_fp_sp) {
7 save_reg_list &= ~((1 << 11) | (1 << 12));
8 } else
9 o(0xE1A0C00D); /* mov ip, sp */

10 if (num_params > 0 && (!leaffunc || num_params > 4)) {
11 o(0xE92D0000 | param_reg_list); /* push arguments */
12 o(0xE24DD000 | ((7-regs_used)*4)); /* adapt stack pointer */
13 }
14 o(0xE92D0000 | save_reg_list); /* context save */
15 if (!ignore_fp_sp)
16 o(0xE1A0B00D); /* mov fp, sp */
17 if (loc) {
18 int diff = (-loc + 3) & -4; /* align to multiple of 4 */
19 if (diff > 255) {
20 GenConstIntoReg(12, diff);
21 o(0xE04DD00C); /* substract with ip */
22 } else
23 o(0xE24DD000 | diff); /* stack adjustment; */
24 }
25 }
26

27 static void GenEpilog() {
28 int restore_reg_list; /* criterion for optimizing fp and sp away */
29 int ignore_fp_sp = (leaffunc && num_params <= 4 && loc == 0);
30 restore_reg_list = ((1 << regs_used)-1) << 4; /* rest. regs r4-r10 if needed */
31 restore_reg_list |= 0xA800; /* restore r11=fp, r13=sp, r15=pc */
32 if (ignore_fp_sp) {
33 restore_reg_list &= ~((1 << 11) | (1 << 13));
34 }
35

36 if (!ignore_fp_sp)
37 o(0xE89B0000 | restore_reg_list); /* context restore */
38 else
39 o(0xE8BD0000 | restore_reg_list); /* if fp and sp ignored, directly pop! */
40 }
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Listing C.18 Generation of Data-Processing Instructions
1 static void GenDataProcessingOp(int op, int dest_reg, int src1_reg,
2 int src2_reg, int second_const, int cval)
3 {
4 static const int DataProcessingOpMap[] =
5 /* add, sub, and, or, xor, [shl, shr, sar], mov, rsb, cmp, teq */
6 { 4, 2, 0, 12, 1, 13,13,13,13, 3, 10, 9 };
7 uint32_t opc = 0xE0000000; /* unconditional execution */
8 int dpopc = DataProcessingOpMap[op]; /* data-processing opcode */
9

10 if ((op == IR_OP_CMP) || (op == IR_OP_TSTZ))
11 opc |= (1<<20); /* set condition codes */
12 if (op == IR_OP_ASS) { /* source operand for mov must be in op2 field */
13 src2_reg = src1_reg;
14 src1_reg = 0;
15 }
16

17 opc |= (dpopc << 21); /* set data-processing opcode [I=0, S=0] */
18 opc |= (dest_reg << 12); /* set destination register */
19

20 if (op == IR_OP_SHL || op == IR_OP_SHR || op == IR_OP_SAR) { /* shifts */
21 opc |= src1_reg; /* set source register */
22 if (op == IR_OP_SHR) opc |= 1<<5;
23 if (op == IR_OP_SAR) opc |= 1<<6;
24 if (!second_const)
25 opc |= 1<<4 | (src2_reg << 8);
26 else
27 opc |= (cval & 0x1f) << 7;
28 } else {
29 opc |= (src1_reg << 16); /* set first source register (0 for mov) */
30 if (!second_const)
31 opc |= src2_reg; /* set second source register */
32 else {
33 if (cval < 0) { /* negative constants */
34 if (op == IR_OP_ADD || op == IR_OP_SUB) {
35 opc ^= 0x00C00000; cval = -cval;
36 } else if (op == IR_OP_ASS) {
37 opc ^= 0x00400000; cval = ~cval;
38 }
39 }
40 if (cval > 255 || cval < 0) {
41 GenConstIntoReg(14, cval);
42 opc |= 14;
43 } else {
44 opc |= 1<<25; /* set I bit */
45 opc |= cval & 0xff;
46 }
47 }
48 }
49 o(opc);
50 }
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Listing C.19 Branch instruction patching
1 ...
2 #define MAX_QUADRUPLES 10000
3 ...
4 uint32_t IR_addrs[MAX_QUADRUPLES];
5 ...
6 void IR_GenCode()
7 {
8 /* first pass: generate code */
9 for (i=0; i<irpc; i++) {

10 IR_addrs[i] = ind;
11 ...
12 }
13

14 ...
15 /* second pass: patch branch instructions */
16 for (i=0; i<irpc; i++) {
17 op = IR[i].op;
18 dest = &(IR[i].dest);
19 if ((op == IR_OP_BRANCHIF) || (op == IR_OP_JMP)) {
20 int instr_addr = IR_addrs[i];
21 int target_addr = IR_addrs[dest->c.i];
22 int offset = (target_addr-instr_addr-8)/4;
23 uint32_t *instr = &(cur_text_section->data[instr_addr]);
24 if ((offset >= 0x1000000) || (offset < -0x1000000))
25 tcc_error("branch offset too large (>=16MB)");
26 offset &= 0x00ffffff;
27 *instr |= offset;
28 }
29 }
30 }
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Listing C.20 Function calls, parameter handling
1 ...
2 static int call_level; /* -1=not in any function call phase */
3 int num_params_per_level[50];
4 ...
5

6 static void FuncCallParam(int param_num, int src_reg, int isconst, int cval)
7 {
8 /* parameters 5+ are supplied on the stack */
9 if (param_num > 4) {

10 if (isconst) {
11 GenConstIntoReg(src_reg=14, cval);
12 }
13 o(0xE52D0004|(src_reg<<12)); /* str r,[sp,#-4]! */
14 return;
15 }
16

17 /* new function call phase starts */
18 if (param_num == 1) {
19 call_level++;
20 /* for nested function calls, save arg regs (r0-r3) in-between */
21 if (call_level >= 1) {
22 int args_to_save = num_params_per_level[call_level-1];
23 if (args_to_save > 4)
24 args_to_save = 4;
25 o(0xE92D0000 | ((1<<args_to_save)-1)); /*P=1, U=0, W=1, L=0*/
26 }
27 /* special case: void function calls with return value, save r0 */
28 } else if (param_num == 0) {
29 call_level++;
30 if (call_level >= 1)
31 o(0xE92D0001);
32 num_params_per_level[call_level] = 1;
33 return;
34 }
35

36 GenDataProcessingOp(IR_OP_ASS, param_num-1, src_reg, -1, isconst, cval);
37 num_params_per_level[call_level] = param_num;
38 }
39

40 static void FuncCallAfter()
41 {
42 /* restore arg regs (r0-r3) if call was nested */
43 if (call_level >= 1) {
44 int args_to_restore = num_params_per_level[call_level-1];
45 o(0xE8BD0000 | ((1<<args_to_restore)-1)); /*P=0, U=1, W=1, L=1*/
46 }
47

48 call_level--;
49 }
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